版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/专题09《一元二次方程的应用综合》重难点题型分类专题简介:本份资料专攻《一元二次方程的应用综合》中“与一元二次方程有关的动点问题”、“一元二次方程与一次函数的综合”、“与一元二次方程有关的阅读探究问题”等重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。考点1:与一元二次方程有关的动点问题方法点拨:一元二次方程在几何动点问题中运用的关键是找到合适的直角三角形,用设定的字母把三边表示出来,再根据勾股定理列出方程进行求解,最后必须根据题意判定结果的合理性。只要认真审题,牢固掌握并灵活运用各个特殊几何图形的性质定理,并根据边角间的数量关系列出等式,就能轻松应对这类题型。1.(2022·安徽合肥·八年级期末)如图,在中,,.点从点出发,沿边以的速度向点移动;点从点同时出发,沿边以的速度向点移动.规定其中一个动点到达终点时,另一个动点也随之停止运动.问经过几秒后,,两点的距离是?2.(2022·河北唐山·八年级期中)如图1,,点P从A出发,沿路线运动,到D停止;点P的速度为每秒,运动时间为x秒,如图1是的面积与x(秒)的图像.(1)______时间段内点P在线段上运动;______时间段内点P在线段上运动;(2)根据题目中提供的信息,请你推断出图1中的______;______;______;图2中的______;(3)当点P运动______秒时,.3.(2021·江苏泰州·九年级期中)如图,在矩形中,,,点从点出发,沿边向点以/秒的速度运动,同时,点从点出发沿边向点以/秒的速度移动.如果、两点在分别到达、两点后就停止移动,回答下列问题:(1)点运动开始后第几秒时,的面积等于;(2)设点运动开始后第秒时,五边形的面积为,写出与的函数关系式,并指出的取值范围.4.(2022·山东淄博·九年级期中)如图,在直角梯形中,,,,,.动点从点出发,沿射线的方向以每秒2个单位的速度运动,动点从点出发,沿射线的方向以每秒1个单位的速度向点运动,点,分别从点,同时出发,当点运动到点时,点随之停止运动.设运动的时间为(秒),当为何值时,以,,三点为顶点的三角形是等腰三角形?考点2:一元二次方程与一次函数的综合方法点拨:利用一次函数与韦达定理进行求解最值问题。1.(2022·黑龙江哈尔滨·八年级期末)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,经过市场调研发现,每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)已知每台设备成本价为30万元,根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?2.(2022·黑龙江哈尔滨·八年级期末)“人与自然和谐共生”哈尔滨湿地节系列活动中,某景点接待游客逐渐增多,6月份第一周接待游客200人,第三周接待游客288人,若该景点接待游客数量的周平均增长率相同.(1)求该景点在6月份的第二周接待游客多少人?(2)该景点第四周接待游客数量是第二周接待游客数量的1.8倍,平均每位游客购买1件旅游纪念品.该景点只销售A,B两种旅游纪念品,A种纪念品每件利润5元,B种纪念品每件利润8元,且售出的B种纪念品的数量不多于A种纪念品的3倍,设第四周该景点售出A种旅游纪念品a件,获得的总利润为W元,求W与a的函数关系式,并求出获得的最大利润.3.(2022·山东滨州·八年级期末)某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y(千克)与每干克降价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)当每千克干果降价3元时,超市获利多少元?(3)若超市要想获利2090元,且让顾客获得更大实惠,这种干果每千克应降价多少元?4.(2022·江苏·九年级专题练习)某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).试销一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应为多少元?(2)该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?5.(2022·山东·烟台市福山区教学研究中心八年级期中)2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.为满足市场需求,某超市购进一批吉祥物“冰墩墩”,进价为每个15元,第一天以每个25元的价格售出30个,为了让更多的消费者拥有“冰墩墩”,从第二天起降价销售,根据市场调查,单价每降低1元,可多售出3个.(1)当售价小于25元时,试求出第二天起每天的销售量y(个)与每个售价x(元)之间的函数关系式;(2)如果前两天共获利525元,且第二天销售数量不低于30个,则第二天每个“冰墩墩”的销售价格为多少元?考点3:与一元二次方程有关的阅读探究问题方法点拨:阅读材料型题是近年来中考试题中出现的新题型,它以内容丰富、构思新颖别致、题型多样为特点,由阅读材料和解决问题两部分组成,让考生在阅读的基础上,理解其中的内容、方法和思想,进而解决问题,解答阅读理解题,要读懂材料,正确理解题意,弄清题目要求,理清问题与材料之间的关系。把问题带到题目中,认真理解材料所提供的思路,多角度去思考,或直接运用阅读中得到的方法、思想解决问题,或在材料中所提供的信息的基础上加以类比、变式、拓展得到类似的方法进行求解.1.(2022·广西北海·七年级期中)阅读材料:把代数式因式分解,可以分解如下:(1)探究:请你仿照上面的方法,把代数式因式分解.(2)拓展:当代数式时,求的值.2.(2022·安徽合肥·八年级期中)探究:已知,如图是一个三角形点阵,从上向下数有无数多行,其中第一行有一个点,第二行有两个点,…,第行有个点…,容易发现,10是三角形点阵中前4行的点数和.(1)求三角形点阵中前10行的点数和;(2)若三角形点阵中前行的点数之和为300,求的值;(3)三角形点阵中前行的点数之和能是600吗?______(填“能”或“不能”)3.(2022·江苏·九年级课时练习)综合与探究:如果关于x的一元二次方程有两个实数根,且其中一个根比另一个根大1,那么称这样的方程是“邻根方程”.例如:一元二次方程的两个根是,,则方程:是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①;
②.(2)已知关于x的一元二次方程(m是常数)是“邻根方程”,求m的值.4.(2022·江苏·九年级单元测试)阅读下列材料:利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:x2+11x+24=(x+8)(x+3)根据以上材料,解答下列问题:(1)初步感知:用多项式的配方法将x2+8x﹣1化成(x+m)2+n的形式;(2)问题探究:下面是某位同学用配方法及平方差公式把多项式x2﹣3x﹣40进行分解因式的解答过程:解:x2﹣3x﹣40=x2﹣3x+32﹣32﹣40=(x﹣3)2﹣49=(x﹣3+7)(x﹣3﹣7)=(x+4)(x﹣10)老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“一一”标画出来,然后写出完整的、正确的解答过程.5.(2022·山东·青岛大学附属中学三模)[问题提出]如图1,由(长×宽×高)个小立方块组成的正方体中,到底有多少个长方体(包括正方体)呢?[问题探究]我们先从较为简单的情形入手.如图2,由个小立方块组成的长方体中,长共有条线段,宽和高分别只有1条线段,所以图中共有个长方体.如图3,由个小立方块组成的长方体中,长和宽分别有条线段,高有1条线段,所以图中共有个长方体.(1)如图4,由个小立方体组成的正方体中,长、宽、高分别有条线段,所以图中共有________个长方体.(2)由个小立方块组成的长方体中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非洲概述课件教学课件
- 青竹湖湘一外国语学校九年级上学期语文第一次月考试卷
- 创意妆课件教学课件
- 三年级数学计算题专项练习汇编及答案
- 考编面试协议书(2篇)
- 《数学物理方法》第7章测试题
- 南京航空航天大学《弹性力学基础》2022-2023学年第一学期期末试卷
- 南京工业大学浦江学院《现代企业管理》2023-2024学年第一学期期末试卷
- 南京工业大学浦江学院《设计史》2021-2022学年第一学期期末试卷
- 交通配套设施(标线、标志、交通信号灯)工程施工组织设计
- 注塑IPQC培训教材
- 现场技术服务确认单
- 恶性心律失常及常见心律失常识别与急诊处理
- 砂石项目盈利能力分析报告(范文)
- 第13课 规划每一天
- 羧甲基纤维素钠的制备及表征
- 【人教版】八年级英语上册 Unit 7 全单元英文教案
- (完整版)汽油发电机操作规程
- 大平矿副井2.25m过卷缓冲装置安装2课件
- 门窗工程项目特征描述情况
- 工程造价咨询服务质量承诺及保证措施
评论
0/150
提交评论