高数级数习题公开课一等奖课件省课获奖课件_第1页
高数级数习题公开课一等奖课件省课获奖课件_第2页
高数级数习题公开课一等奖课件省课获奖课件_第3页
高数级数习题公开课一等奖课件省课获奖课件_第4页
高数级数习题公开课一等奖课件省课获奖课件_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

习题课级数收敛、求和与展开机动目录上页下页返回结束三、幂级数和函数求法四、函数幂级数和付式级数展开法一、数项级数审敛法二、求幂级数收敛域办法

第十一章第1页

求和展开(在收敛域内进行)基本问题:鉴别敛散;求收敛域;求和函数;级数展开.为傅立叶级数.为傅氏系数)时,时为数项级数;时为幂级数;机动目录上页下页返回结束第2页一、数项级数审敛法1.利用部分和数列极限鉴别级数敛散性2.正项级数审敛法必要条件不满足发散满足比值审敛法根值审敛法收敛发散不定比较审敛法用它法鉴别积分鉴别法部分和极限机动目录上页下页返回结束第3页3.任意项级数审敛法为收敛级数Leibniz鉴别法:若且则交错级数收敛,概念:且余项若收敛,称绝对收敛若发散,称条件收敛机动目录上页下页返回结束第4页例1.

若级数均收敛,且证明级数收敛.证:

则由题设收敛收敛收敛练习题:

P2571;2;3;4;5机动目录上页下页返回结束第5页解答提醒:P257

题2.鉴别下列级数敛散性:提醒:(1)据比较鉴别法,原级数发散.因调和级数发散,机动目录上页下页返回结束第6页利用比值鉴别法,可知原级数发散.用比值法,可判断级数因n充足大时∴原级数发散.用比值鉴别法可知:时收敛;时,与p

级数比较可知时收敛;时发散.再由比较法可知原级数收敛.时发散.发散,收敛,机动目录上页下页返回结束第7页P257题3.

设正项级数和也收敛.提醒:

存在N>0,又因利用收敛级数性质及比较判敛法易知结论正确.都收敛,证明级数当n>N时机动目录上页下页返回结束第8页P257题4.

设级数收敛,且是否也收敛?说明理由.但对任意项级数却不一定收敛.问级数提醒:

对正项级数,由比较鉴别法可知级数收敛,收敛,级数发散.例如,取机动目录上页下页返回结束第9页P257题5.讨论下列级数绝对收敛性与条件收敛性:提醒:(1)P>1

时,绝对收敛;0<p≤1

时,条件收敛;p≤0

时,发散.(2)因各项取绝对值后所得强级数

原级数绝对收敛.故机动目录上页下页返回结束第10页因单调递减,且但因此原级数仅条件收敛

.由Leibniz鉴别法知级数收敛

;机动目录上页下页返回结束第11页因因此原级数绝对收敛.机动目录上页下页返回结束第12页二、求幂级数收敛域办法•

标准形式幂级数:先求收敛半径R,再讨论•非标准形式幂级数通过换元转化为标准形式直接用比值法或根值法处敛散性.P257题7.求下列级数敛散区间:练习:机动目录上页下页返回结束第13页解:当因此级数在端点发散,时,时原级数收敛.故收敛区间为机动目录上页下页返回结束第14页解:

因故收敛区间为级数收敛;一般项不趋于0,级数发散;机动目录上页下页返回结束第15页例2.解:

分别考虑偶次幂与奇次幂组成级数极限不存在∵原级数=∴其收敛半径注意:机动目录上页下页返回结束第16页•求部分和式极限三、幂级数和函数求法求和•

映射变换法逐项求导或求积分对和式积分或求导难直接求和:直接变换,间接求和:转化成幂级数求和,再代值求部分和等•初等变换法:分解、套用公式(在收敛区间内)•

数项级数求和机动目录上页下页返回结束第17页例3.

求幂级数法1

易求出级数收敛域为机动目录上页下页返回结束第18页法2先求出收敛区间则设和函数为机动目录上页下页返回结束第19页练习:解:(1)显然x=0

时上式也正确,故和函数为而在x≠0P258题8.求下列幂级数和函数:级数发散,机动目录上页下页返回结束第20页(4)机动目录上页下页返回结束第21页显然x=0

时,和为0;根据和函数连续性,有x=1时,级数也收敛.即得机动目录上页下页返回结束第22页练习:解:

原式=和.P258题9(2).求级数机动目录上页下页返回结束第23页四、函数幂级数和付式级数展开法•

直接展开法•间接展开法练习:1.

将函数展开成

x

幂级数.—利用已知展式函数及幂级数性质—利用泰勒公式解:机动目录上页下页返回结束1.函数幂级数展开法第24页2.

设,将f(x)展开成x

幂级数,和.(01考研)解:于是并求级数机动目录上页下页返回结束第25页机动目录上页下页返回结束第26页2.函数付式级数展开法系数公式及计算技巧;收敛定理;延拓办法练习:上体现式为将其展为傅氏级数.P258题11.设

f(x)是周期为2

函数,它在解答提醒第27页机动目录上页下页返回结束思考:

如何利用本题成果求级数根据付式级数收敛定理,当x=0时,有提醒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论