版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市户县电厂中学2022年高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式xf(x)<0的解集为()A.(﹣2,0)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2) C.(﹣∞,﹣2)∪(2,+∞) D.(﹣2,0)∪(0,2)参考答案:D【考点】奇偶性与单调性的综合.【分析】根据函数的奇偶性求出f(﹣2)=0,xf(x)<0分成两类,分别利用函数的单调性进行求解.【解答】解:∵f(x)为奇函数,且满足f(2)=0,且在(0,+∞)上是增函数,∴f(﹣2)=﹣f(2)=0,f(x)在(﹣∞,0)内是增函数∵xf(x)<0,∴或根据在(﹣∞,0)内是增函数,在(0,+∞)内是增函数解得:x∈(0,2)∪(﹣2,0).故选:D.4.甲乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲乙下成和棋的概率为()A.60%
B.30%
C.10%
D.50%参考答案:D略3.数列中,,则此数列前30项的绝对值的和为(
)A.720
B.765
C.600
D.630参考答案:B4.给出幂函数①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=.其中满足条件f>(x1>x2>0)的函数的个数是(
)A.1个 B.2个 C.3个 D.4个参考答案:A【考点】幂函数的性质.【专题】综合题;数形结合.【分析】若函数满足f>(x1>x2>0)则表示函数在敬意(0,+∞)上是凸形的,分析题目中五个函数图象的形状,易得到结果.【解答】解:①函数f(x)=x的图象是一条直线,故当x1>x2>0时,f=;②函数f(x)=x2的图象是凹形曲线,故当x1>x2>0时,f<;③在第一象限,函数f(x)=x3的图象是凹形曲线,故当x1>x2>0时,f<;④函数f(x)=的图象是凸形曲线,故当x1>x2>0时,f>;⑤在第一象限,函数f(x)=的图象是一条直线,故当x1>x2>0时,f=;故仅有函数f(x)=满足,当x1>x2>0时,f>;故选:A【点评】本题考查的知识点是幂函数的图象和性质,其中准确理解f>(x1>x2>0)表示的几何意义是解答本题的关键.5.某程序框图如图所示,若输出的,则判断框内为A. B.C. D.参考答案:B【分析】模拟程序运行,观察变量值的变化,判断循环条件即可,根据输出结果可得循环条件.【详解】当时,,;当时,,;当时,,;当时,,;当时,,.此时循环结束,故选B.【点睛】本题考查程序框图,解题时只要模拟程序运行,观察其中变量值的变化情况,进行判断.6.将两个数a=10,b=18交换,使a=18,b=10,下面语句正确一组是(
)A.
B.
C.
D.参考答案:B7.在Rt△ABC中,∠C=90°,AC=4,则等于()A.﹣16 B.﹣8 C.8 D.16参考答案:D【考点】9R:平面向量数量积的运算;98:向量的加法及其几何意义.【分析】本题是一个求向量的数量积的问题,解题的主要依据是直角三角形中的垂直关系和一条边的长度,解题过程中有一个技巧性很强的地方,就是把变化为两个向量的和,再进行数量积的运算.【解答】解:∵∠C=90°,∴=0,∴=()==42=16故选D.8.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是(
)A. B. C. D.参考答案:D【分析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D.【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.9.在△ABC中,已知a2=b2+c2+bc,则角A为()A. B. C. D.或参考答案:C【考点】HR:余弦定理.【分析】根据余弦定理表示出cosA,然后把已知的等式代入即可求出cosA的值,由A的范围,根据特殊角的三角函数值即可得到A的度数.【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C10.要得到函数y=cos()的图象,只需将y=sin的图象(
)
A.向左平移个单位
B.同右平移个单位C.向左平移个单位
D.向右平移个单位参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.满足条件的集合有_________个。参考答案:3略12.若直线:,
:且则的值_______参考答案:0或13.已知下列不等式:(1);
(2);
(3);
(4);
(5),
其中所有正确的不等式的序号是
.参考答案:(2)(4)(5)
略14.如图所示,设为内的两点,且则的面积与的面积之比为______________.
参考答案:略15.若扇形的周长为定值l,则扇形的圆心角为
时,扇形的面积最大。参考答案:2略16.已知f(x)=,若f(x)=10,则x=_______参考答案:17.若函数f(x)=px+q,f(3)=5,f(5)=9,则f(1)的值为
.参考答案:1【考点】一次函数的性质与图象;函数的值.【专题】函数的性质及应用.【分析】利用待定系数法求出函数的解析式,进而即可求出函数值.【解答】解:∵函数f(x)=px+q,f(3)=5,f(5)=9,∴,解得,∴f(x)=2x﹣1.∴f(1)=2×1﹣1=1.故答案为1.【点评】熟练掌握待定系数法是解题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)已知函数。(1)求的最小正周期;(2)若将的图象上的点纵坐标不变,横坐标缩短为原来的,再向右平移个单位,得到函数的图象,求函数在区间上的最小值。参考答案:的最小正周期为=6.
………3分(2)若将的图象上的点纵坐标不变,横坐标变为原来的倍,得到,再将的图象向右平移个单位,得到函数的图象,…8分时,…9分当时,即
时…11分,取得最大值2…12分19.某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足(其中,a为正常数),现假定生产量与销售量相等,已知生产该产品t万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.参考答案:(1)y=25-(+x),(,a为正常数);(2)当a≥3时,促销费用投入3万元时,厂家的利润最大;当O<a<3时,促销费用投入x=a万元时,厂家的利润最大.试题分析:(1)利润为总销售所得减去投入成本和促销费用,得y=t(5+))﹣(10+2t)﹣x=3t+10-x,又销售量t万件满足t=5-,整理化简可得y=25-(+x);(2)将函数方程整理为对勾函数形式y=28-(+x+3),利用基本不等式得到=x+3,即x=3时,得到利润最大值为。试题解析:(1)由题意知,利润y=t(5+))﹣(10+2t)﹣x=3t+10-x由销售量t万件满足t=5-(其中0≤x≤a,a为正常数).代入化简可得:y=25-(+x),(0≤x≤a,a为正常数)(2)由(1)知y=28-(+x+3),当且仅当=x+3,即x=3时,上式取等号.当a≥3时,促销费用投入3万元时,厂家的利润最大;当0<a<3时,y在0≤x≤a上单调递增,x=a,函数有最大值.促销费用投入x=a万元时,厂家的利润最大.综上述,当a≥3时,促销费用投入3万元时,厂家的利润最大;当0<a<3时,促销费用投入x=a万元时,厂家的利润最大.20.(12分)已知集合(1)分别求出;(2)已知,若,求实数的取值范围。参考答案:∵
(2)∵
∴
21.已知的角A、B、C所对的边分别是a、b、c,设向量,若,求证:为等腰三角形;若,边长角,求的面积参考答案:解析:(1)即,其中R是三角形ABC外接圆半径,为等腰三角形(2)由题意可知=0,即由余现定理可知,即(舍去,22.(12分)从某小组的2名女生和3名男生中任选2人去参加一项公益活动.(1)求所选2人中恰有一名男生的概率;(2)求所选2人中至少有一名女生的概率.参考答案:考点: 古典概型及其概率计算公式.专题: 概率与统计.分析: 设2名女生为a1,a2,3名男生为b1,b2,b3,列举可得总的基本事件数,分别可得符合题意得事件数,由古典概型的概率公式可得.解答: 设2名女生为a1,a2,3名男生为b1,b2,b3,从中选出2人的基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3),共10个,(1)设“所选2人中恰有一名男生”的事件为A,则A包含的事件有:(a1,b1),(a1,b2),(a1,b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【初中生物】真菌-2024-2025学年七年级生物上册同步教学课件(人教版2024)
- 【初中生物】微生物的分布-2024-2025学年七年级生物上册同步备课课件(人教版2024)
- 2024就智能工厂建设与运营的合资合同
- 2024年度清雪业务承包合同
- 2024年度特许经营与加盟合同
- 2024建设工程的项目合作协议合同范本
- 2024个人小额贷款合同
- 2024股份合伙人合同范本
- 2024年工程设计合作伙伴协议
- 2024年度原材料采购担保合同
- 2023-2024学年南京地区五年级语文上册期中自测(统编版)
- 船舶系固设备操作规程
- 新时代大中小学思政课一体化建设研究
- 工业自动化系统集成项目验收方案
- 新教科版科学六年级上册全册实验汇总 (超全)
- 王洪图黄帝内经80课时讲稿
- 摊铺机司机班组级安全教育试卷
- 重症肌无力指南
- 限制被执行人驾驶令申请书
- 项目主要施工管理人员情况
- 个人借条电子版模板
评论
0/150
提交评论