




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市洪恩乡联合中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列说法错误的是()A.如果命题“?p”与命题“p∨q”都是真命题,那么命题q一定是真命题B.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”C.若命题p:?x0∈R,x02+2x0-3<0,则?p:?x∈R,x2+2x-3≥0D.“sinθ=”是“θ=30°”的充分不必要条件参考答案:D2.已知m,n是两条不同直线,,是两个不同平面,则下列命题正确的是()A.若,垂直于同一平面,则与平行B.若,平行于同一平面,则m与n平行C.若,不平行,则在内不存在与平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面参考答案:D由,若,垂直于同一平面,则,可以相交、平行,故不正确;由,若,平行于同一平面,则,可以平行、重合、相交、异面,故不正确;由,若,不平行,但平面内会存在平行于的直线,如平面中平行于,交线的直线;由项,其逆否命题为“若与垂直于同一平面,则,平行”是真命题,故项正确.所以选D.考点:1.直线、平面的垂直、平行判定定理以及性质定理的应用.3.已知命题p:△ABC所对应的三个角为A,B,C.
A>B是cos2A<cos2B的充要条件;命题q:函数的最小值为1;则下列四个命题中正确的是(
)A.
B.
C.
D.
参考答案:B略4.如果函数f(x)=x﹣sin2x+asinx在区间[0,]上递增,则实数a的取值范围是()A.[﹣1,] B.[﹣1,1] C.[﹣,+∞) D.[﹣,+∞)参考答案:C【考点】三角函数中的恒等变换应用.【分析】由求导公式和法则求出f′(x),由题意可得f′(x)≥0在区间[0,]上恒成立,设t=cosx(0≤t≤1),化简得5﹣4t2+3at≥0,对t分t=0、0<t≤1讨论,分离出参数a,运用函数的单调性求出最值,由恒成立求出实数a的取值范围.【解答】解:由题意得,f′(x)=1﹣cos2x+acosx,∵函数f(x)=x﹣sin2x+asinx在区间[0,]上递增,∴函数f′(x)≥0在区间[0,]上恒成立,则1﹣cos2x+acosx≥0,即﹣cos2x+acosx≥0,设t=cosx(0≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,∵y=4t﹣在(0,1]递增,∴t=1时,取得最大值﹣1,即3a≥﹣1,解得a≥,综上可得a的范围是[).故选:C.5.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.6.已知坐标平面上的凸四边形ABCD满足=(1,),=(﹣,1),那么·的取值范围是()A.(﹣1,) B.(﹣1,2] C.[﹣2,0) D.[0,2]参考答案:C【考点】平面向量数量积的运算.【分析】根据向量的模的计算和向量的坐标运算得到四边形ABCD为对角线垂直且相等的四边形,问题得以解决.【解答】解:∵,∴?=1×(﹣)+×1=0,∴⊥,∴凸四边形ABCD的面积为AC×BD=×2×2=2,设AC与BD交点为O,OC=x,OD=y,则AO=2﹣x,BO=2﹣y,则?=(+)(+)=?+?+?+?2﹣=x(x﹣2)+y(y﹣2)=(x﹣1)2+(y﹣1)2﹣2,(0<x,y<2);∴当x=y=1时,?=﹣2为最小值,当x→0或1,y→0或1时,?接近最大值0,∴?的取值范围是[﹣2,0).故选:C.7.已知的三内角的对边分别为,若,则(
)(A)(B)(C)(D)参考答案:A8.在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项的和是(
)A.13 B.26 C.52 D.56参考答案:B【考点】等差数列的性质;等差数列的前n项和.【专题】等差数列与等比数列.【分析】可得a3+a5=2a4,a7+a13=2a10,代入已知可得a4+a10=4,而S13==,代入计算可得.【解答】解:由等差数列的性质可得:a3+a5=2a4,a7+a13=2a10,代入已知可得3×2a4+2×3a10=24,即a4+a10=4,故数列的前13项之和S13====26故选B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题.9.在中,,则(
)A.
B.
C.
D.参考答案:C略10.若在上有极值点,则实数的取值范围是(
)A. B. C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.(1)______;(2)_______.参考答案:
(1)2.
(2)10.【分析】根据对数运算法则,化简(1);根据指数与对数的运算法则,化简(2)即可。【详解】(1)根据对数运算法则,可得(2)根据指数幂的运算和对数运算法则和换底公式,可得【点睛】本题考查了指数与对数的运算法则和化简求值,属于基础题。12.已知下列几个命题:①已知F1、F2为两定点,=4,动点M满足,则动点M的轨迹是椭圆。②一个焦点为且与双曲线有相同的渐近线的双曲线标准方程是③“若=b,则a2=ab”的否命题。④若一个动圆的圆心在抛物线上,且动圆恒与直线相切,则动圆必过定点。其中真命题有____________参考答案:②④略13.已知双曲线的对称轴为坐标轴,焦点坐标在x轴上,离心率为,b=2,则双曲线的标准方程是
▲
.参考答案:14.已知函数的极小值为,则a的值为______.参考答案:0【分析】求出导函数,确定极小值,由已知求出参数.【详解】由题意,时,,时,,所以的极小值是,所以,.故答案为:0.【点睛】本题考查导数与极值,掌握极值的定义是解题关键.15.不等式a2+8b2≥λb(a+b)对于任意的a,b∈R恒成立,则实数λ的取值范围为
.参考答案:[﹣8,4]
略16.在某次数学测验中,学号的四位同学的考试成绩,且满足,则这四位同学的考试成绩的所有可能情况的种数为________种.参考答案:15【分析】分两类,按的情况,共有种,按的情况,共有种,再用分类计数原理求解.【详解】从所给的5个成绩中,任取4个,即可得到四位同学的考试成绩,按的情况,共有种,从所给的5个成绩中,任取3个,即可得到四位同学的考试成绩,按的情况,共有种,综上:满足,这四位同学的考试成绩的所有可能情况的种数为15种.故答案为:15【点睛】本题主要考查组合问题,还考查了理解辨析的能力,属于中档题.17.已知数列{an}满足:a3=5,an+1=2an﹣1(n∈N*),则a1=
.参考答案:2【考点】数列递推式.【专题】等差数列与等比数列.【分析】利用递推公式,结合递推思想求解.【解答】解:∵数列{an}满足:a3=5,an+1=2an﹣1(n∈N*),∴a2=×(5+1)=3.a1==2.故答案为:2.【点评】本题考查数列的第3项的求法,是基础题,解题时要注意递推思想的合理运用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=4,BD=2,PD⊥底面ABCD.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D大小为,求AP与平面PBC所成角的正弦值.参考答案:【考点】与二面角有关的立体几何综合题;平面与平面垂直的判定.【分析】(Ⅰ)由已知条件推导出BC⊥BD,PD⊥BC,从而得到BC⊥平面PBD,由此能证明平面PBC⊥平面PBD.(Ⅱ)由(Ⅰ)知,BC⊥平面PBD,从而得到∠PBD即为二面角P﹣BC﹣D的平面角,分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系,利用向量法能求出AP与平面PBC所成角的正弦值.【解答】(Ⅰ)证明:∵CD2=BC2+BD2.∴BC⊥BD.又∵PD⊥底面ABCD.∴PD⊥BC.又∵PD∩BD=D.∴BC⊥平面PBD.而BC?平面PBC,∴平面PBC⊥平面PBD.…(4分)(Ⅱ)由(Ⅰ)知,BC⊥平面PBD,所以∠PBD即为二面角P﹣BC﹣D的平面角,即∠PBD=.而,所以.∵底面ABCD为平行四边形,∴DA⊥DB,分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系.则A(2,0,0),,,,所以,,,,设平面PBC的法向量为,则即令b=1则,∴AP与平面PBC所成角的正弦值为:.…(12分)【点评】本题考查平面与平面垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.19.某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是.同样也假定D受A、B和C感染的概率都是.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).参考答案:解:随机变量X的分布列是X123PX的均值为20.已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论参考答案:解:不论点E在何位置,都有BD⊥AE
证明如下:连结AC,∵ABCD是正方形 ∴BD⊥AC
∵PC⊥底面ABCD且平面
∴BD⊥PC-又∵
∴BD⊥平面PAC∵不论点E在何位置,都有AE平面PAC
∴不论点E在何位置,都有BD⊥AE略21.(本小题满分15分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点。(1)求双曲线的方程;(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求的范围。参考答案:(1)设双曲线的方程为
(1分)则,再由得,
(3分)故的方程为
(5分)(2)将代入得
(6分)由直线与双曲线C2交于不同的两点得:
(8分)且①
(9分)设,则
(10分)又,得
即,解得:②
(13分)由①、②得:故k的取值范围为。
(15分)22.已知椭圆的右焦点为,右准
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 售楼意向协议书范本
- 员工租车协议合同协议
- 榻榻米安装合同协议
- 武术教练劳务合同协议
- 民宿保洁合同协议书模板
- 商场小吃店转租合同协议
- 恋爱合同协议书电子版
- 快装管线出售合同协议
- 售房平台合同协议
- 款咖啡采购合同协议
- GB/T 37027-2025网络安全技术网络攻击和网络攻击事件判定准则
- 2025年江苏南通苏北七市高三二模高考物理试卷(含答案详解)
- 2024年药理学考试真题回顾试题及答案
- 2025年军队文职(司机类)核心知识点备考题库(含答案)
- 2025年深圳二模考试试题及答案
- (一模)临沂市2025届高三高考第一次模拟考试生物试卷(含标准答案)
- 老年康体指导职业教育课件
- 微训练 一文多考 备考高效之诗歌《临安春雨初霁》陆游 - 教师版
- 新疆乌鲁木齐市米东区2024-2025学年九年级上学期期中数学试卷(含答案)
- 课件:《科学社会主义概论(第二版)》第一章
- 国际关系理论知到智慧树章节测试课后答案2024年秋外交学院
评论
0/150
提交评论