版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市北塔区茶元头乡中学2021-2022学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设点,若在圆上存在点Q,使得,则a的取值范围是A.
B.
C.
D.参考答案:A2.过曲线()上横坐标为1的点的切线方程为(
)A.
B.
C.
D.参考答案:B略3.圆上的点到直线的距离的最大值是(
)
A.
B.
C.
D. 参考答案:B4.已知f(x)=x3的所有切线中,满足斜率等于1的切线有()A.1条B.2条
C.多于两条
D.以上都不对参考答案:B5.设命题p和命题q,“p∨q”的否定是真命题,则必有()A.p真q真
B.p假q假
C.p真q假
D.p假q真参考答案:B略6.已知向量满足,且关于x的函数在R上有极值,则与的夹角的取值范围为(
)A.(]
B.[]
C.(0,]
D.(]参考答案:A7.某空间几何体的三视图如图所示,则该几何体的体积为(
)(A)
(B)(C)
(D)参考答案:B由三视图得该几何体是从四棱锥中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形,高为2,圆锥的底面半径是1,高为2,.故选:B.
8.若a,b,c为实数,且a<b<0,则下列命题正确的是()A.a2>ab>b2 B.ac2<bc2 C. D.参考答案:A【考点】不等关系与不等式.【分析】利用不等式的基本性质可知A正确;B若c=0,则ac2=bc2,错;C利用不等式的性质“同号、取倒,反向”可知其错;D作差,因式分解即可说明其错.【解答】解:A、∵a<b<0,∴a2>ab,且ab>b2,∴a2>ab>b2,故A正确;B、若c=0,则ac2=bc2,故不正确;C、∵a<b<0,∴>0,∴,故错;D、∵a<b<0,∴<0,∴,故错;故答案为A.9.在用反证法证明命题“过一点只有一条直线与已知平面垂直”时,应假设()A.过两点有一条直线与已知平面垂直B.过一点有一条直线与已知平面平行C.过一点有两条直线与已知平面垂直D.过一点有一条直线与已知平面不垂直参考答案:C【考点】R9:反证法与放缩法.【分析】假设的结论为原结论的否定.【解答】解:命题“过一点只有一条直线与已知平面垂直”的否定为:过一点至少有两条直线与已知平面垂直,故选C.【点评】本题考查了反证法证明,属于基础题.10.为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新3县空气质量进行调查,按地域特点在三县内设置空气质量观测点,已知三县内观测点的个数分别为6,y,z,依次构成等差数列,且6,y,z+6成等比数列,若用分层抽样的方法抽取12个观测点的数据,则容城应抽取的数据个数为()A.8
B.6
C.4
D.2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知函数与的图象所围成的阴影部分(如图所示)的面积为,则
参考答案:2略12.设为虚数单位,若复数
参考答案:试题分析:考点:复数运算13.函数的单调递增区间为_______.参考答案:(0,1)函数有意义,则:,且:,由结合函数定义域可得函数的单调递增区间为,故答案为.14.已知,①则②.参考答案:
1
;
24015.在区间[﹣,]上任取一个数x,则函数f(x)=3sin(2x﹣)的值不小于0的概率为.参考答案:【考点】几何概型.【分析】本题是几何概型的考查,利用区间长度比即可求概率.【解答】解:在区间[﹣,]上任取一个数x,等于区间的长度为,在此范围内,满足函数f(x)=3sin(2x﹣)的值不小于0的区间为[],区间长度为,所以由几何概型的公式得到所求概率为;故答案为:.16.已知F1,F2为椭圆()的左、右焦点,若椭圆上存在点P使(c为半焦距)且为锐角,则椭圆离心率的取值范围是
.参考答案:根据焦半径的范围得到又因为为锐角,故根据余弦定理得到综上得到离心率的取值范围是.故答案为:。
17.椭圆C:的焦距是______.参考答案:8试题分析:由题意可知:,从而,即,所以焦距是.考点:由椭圆的标准方程求几何性质.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知是等差数列,,,设,则数列的通项公式
.参考答案:解:由,得:,
……2分:或
……3分 由
得:或
……6分 依题意有但
………8分 故且等号不能同时成立,解得.
…………………12分
略19.由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.①求该团队能进入下一关的概率;②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.参考答案:(1),,甲、乙在1分钟内解开密码锁的频率分别是0.9,0.7;(2)①0.985;②先派出甲,再派乙,最后派丙.【分析】(1)根据频率分布直方图中左右两边矩形面积均为0.5计算出中位数,可得出a、b的值,再分别计算甲、乙在1分钟内解开密码锁的频率值;(2)①利用独立事件概率的乘法公式可计算出所求事件的概率;②分别求出先派甲和先派乙时随机变量的数学期望,比较它们的大小,即可得出结论。【详解】(1)甲解开密码锁所需时间的中位数为47,,解得;
,解得;
∴甲在1分钟内解开密码锁的频率是;
乙在1分钟内解开密码锁的频率是;(2)由(1)知,甲在1分钟内解开密码锁的频率是0.9,乙是0.7,丙是0.5,且各人是否解开密码锁相互独立;①令“团队能进入下一关”的事件为,“不能进入下一关”的事件为,,
∴该团队能进入下一关的概率为;②设按先后顺序自能完成任务的概率分别p1,p2,p3,且p1,p2,p3互不相等,根据题意知X的取值为1,2,3;则,,,,,
若交换前两个人的派出顺序,则变为,由此可见,当时,交换前两人的派出顺序可增大均值,应选概率大的甲先开锁;若保持第一人派出的人选不变,交换后两人的派出顺序,,∴交换后的派出顺序则变为,当时,交换后的派出顺序可增大均值;所以先派出甲,再派乙,最后派丙,这样能使所需派出的人员数目的均值(数学期望)达到最小.【点睛】本题考查频率分布直方图中位数的计算、离散型随机变量分布列与数学期望,在作决策时,可以依据数学期望和方差的大小关系来作出决策,考查分析问题的能力,属于难题。20.(12分)已知在,与时都取得极值高考资源网
(1)求的值及函数的单调区间;高考资源网(2)若对不等式恒成立,求的取值范围.高考资源网参考答案:解:(1)高考资高考资源由高,得高考资源网高考资源网高考资源网函数的单调区间如表:高考资源网递增极大值递减极小值递增的增区间为与,递减区间为高考(2),高考资源网当时,有极大值,而,则为最大值,要使恒成立只要,解之或略21.已知函数.(1)讨论的单调性;(2)是否存在a,b,使得在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.参考答案:(1)见详解;(2)或.【分析】(1)先求的导数,再根据的范围分情况讨论函数单调性;(2)根据的各种范围,利用函数单调性进行最大值和最小值的判断,最终得出,的值.【详解】(1)对求导得.所以有当时,区间上单调递增,区间上单调递减,区间上单调递增;当时,区间上单调递增;当时,区间上单调递增,区间上单调递减,区间上单调递增.(2)若在区间有最大值1和最小值-1,所以若,区间上单调递增,区间上单调递减,区间上单调递增;此时在区间上单调递增,所以,代入解得,,与矛盾,所以不成立.若,区间上单调递增;在区间.所以,代入解得.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,即,又因为,所以无解.若,区间上单调递增,区间上单调递减,区间上单调递增.即在区间单调递减,在区间单调递增,所以区间上最小值为而,故所以区间上最大值为.即相减得,解得,又因为,所以无解.若,区间上单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度珠宝首饰OEM定制加工合同范本2篇
- 二零二五版网络安全设备采购合同3篇
- 二零二五版钢琴经销商区域保护与市场拓展合同2篇
- 原材料卸车作业中最低效率保障合同3篇
- 二零二五年度绿色信贷反担保保证合同规范范本3篇
- 基于2025年度战略规划的企业裁员和解雇合同3篇
- 二零二五版房屋买卖合同范本下载关注合同签订中的房产证注销与手续办理3篇
- 二零二五版汽车租赁合同押金退还协议书3篇
- 二零二五年度房产回购及社区公共设施建设合同3篇
- 二零二五版道路混凝土铺设及维修合同3篇
- GB/T 2992-1998通用耐火砖形状尺寸
- 英语名著阅读老人与海教学课件(the-old-man-and-the-sea-)
- 学校食品安全知识培训课件
- 全国医学博士英语统一考试词汇表(10000词全) - 打印版
- 最新《会计职业道德》课件
- DB64∕T 1776-2021 水土保持生态监测站点建设与监测技术规范
- 中医院医院等级复评实施方案
- 数学-九宫数独100题(附答案)
- 理正深基坑之钢板桩受力计算
- 学校年级组管理经验
- 10KV高压环网柜(交接)试验
评论
0/150
提交评论