内容课件参考julia 2013 theoretical investig_第1页
内容课件参考julia 2013 theoretical investig_第2页
内容课件参考julia 2013 theoretical investig_第3页
内容课件参考julia 2013 theoretical investig_第4页
内容课件参考julia 2013 theoretical investig_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TheoreticalInvestigationonMonomerandSolventSelectionforMolecularImprintingof †Copiah olnCommunityCollege,11Co ircle,Natchez,Mississippi39120,United‡DepartmentofChemistryandBiochemistry,JacksonStateUniversity,1400J.R.LynchStreet,Jackson,Mississippi39217,United::Theaimofthisworkistoserveasaguidelinefortheinitialselectionofmonomerandsolventforthesynthesisofthe poundbasedmolecularlyimprintedpolymers,MIPs.Reporteddataludeevaluationofsixsystemswiththeabilitytoformnoncovalentlybondedmonomer−temtecomplexes.Thesesystemsarerepresentedbythefollowingaliphaticandaromaticmolecules:acrolein,acrylonitrile,2,6bisacrylamide,4ethylenebenzoicacid,methylmethacrylate,and2vinylpyridine.Cavemodelsforselectedmonomersarealsopresentedandsupportedbybindingenergyysisundervariousconditions.Solventeffectsonmonomer−temtebindingenergyhavebeenstudiedforfoursolvents:acetone,acetonitrile,chloroform,andmethanol.Additionally,systemssuchas2,4dinitrotoluene(2,4DNT),2,6dinitrotoluene(2,6DNT),pentachlorophenol(PCP),and3,6dichloro2methoxybenzoicacid(Dicamba)havebeenusedtostudyselectivityofacroleinbasedMIPtowarddetection.Thedensityfunctionaltheory,DFT,methodhasbeenusedforallstructural,vibrationalfrequency,andsolventcalculations.numberofnecessarysearchsynthesesperformedfortheselectionofthebestcompoundforaparticularexperiment.Computationallybasedevaluationextractsthemostusefulsubstancesoutofthepoolofpossiblesystemsquicklyandcostimprinting,MI,isanexperimentaltechniqueforcreatingreceptorstructuresonapolymersurfacethatcanselectivelybindtomoleculesofinterest.MIhasabroadspectrumofextraction,3,4detection,5,6anddrugdelivery.7,8AspresentedinFigure1,themolecularimprintingprocess9canbedividedintoFigure1.MIPprocess:(A)selfassembly;(B)polymerization;(C)solventextraction.threemainstages.Duringthefirststage(monomerselfassembly)themoleculeofinterest,thetemte,issurroundedbymonomerspositionedtoinctwithfunctionalgroupsofthetemte.Thesecondstage(polymerization)occurswhenmonomerspolymerizewithcrosslinkingagentstoformacavearoundthetemte.Duringthefinal,third,stage(extraction),thetemteisremoved,byasolventextractionprocess,fromtheformed .Theemptypossessesthecharacter

ofthefunctionalgroups.TheformedMIPisreadytorebindthetemteforitsdetection,separation,orextraction.pounds,especially2,4,6trinitrotoluene,10,11arethegroupofhighlyenergeticmaterialsforwhichdetectionisindemandduetosecurity5,12aswellasenvironmental6reasons. causinganimmediatedanger,asanexplosivematerial,thissubstancec socontaminatesoilandgroundwater.6Hence,ithasbeenproposedtoapplytheMIPtechniqueforthedetectionandpossibleremovalofthethetheoreticalmodelfortheevaluationofthebindingenergiesbetweenthemonomerandtemteforbothDNT13and14specieshasbeendesigned.ThepresentedmodelallowsustopredictqualitativelyandtativelypossibleinteractionsintheMIPsystem.TheoreticaldatareportedinbothmanuscriptshavebeenverifiedbyexperimentalFTIRspectra.Theabovementionedmodelhasbeenutilizedinthecourseofthisworktoperformtheoreticalcalculationsofsixselectedaromaticandaliphaticmonomers,forselectionofthebestonefortheimprintingof .AspresentedinFigure2,studiedmonomersludeacrolein,acrylonitrile,2,6bisacrylamide,4ethylenebenzoicacid,methylmethacrylate,and2vinylpyridine.Theeffectsofthefourmostcommonsolventsacetonitrile,chloroform,andmethanol)onthe1:1monomer−temteandselectedcave−temtesystemshavealsobeenreported.Additionally,theselectivityofacroleinbasedMIPReceived:December26, January16,Published:January23,©2013AmericanChemical dx. |J.Phys.Chem.A2013,117,Figure2.Structuresoforganictowarddetectionofhasbeenstudiedusingacavemodelinctingwith2,4DNT,2,6DNT,PCP,andDicambamolecules,aspossiblecompetitors.Overall,thisworkaimstoprovideaguidelineforthemonomerandsolventselectionprocessforthemolecularimprintingofnitroaromaticcompounds,aswellasaninsightintoMIPselectivity.COMPUTATIONALThisstudyutilizespreviouslydeveloped1:1modelforimprinting,14whereinctswithasinglemonomermoleculethroughhydrogenbonding.Althoughthemonomercanformthreepossibleisomers(ortho,meta,andpara)withrespecttothemethylgroupof,themodelisbasedonthelowestenergyorthocomplex,AspresentedinFigure3,monomer(acrolein)inctswithmethylandtheorthonitrogroupofthemoleculethroughhydrogenbonds.Twocavemodelsmadeofthealiphaticandaromaticmonomers(underlinedinTable1)havebeendesignedto

studysolventeffectsonthebindingenergy.Thecaveinfirstsixdimersaroundthetemte.Figure4bshowsanemptyacroleincave.Thesecondcaveisbuiltfromeightaromatic2vinylpyridinemolecules,formingfourdimersaround,aspresentedinFigure4c.Figure4dshowsanempty2vinylpyridinecave.ThestudyontheselectivityofMIPtowardthemoleculehasbeenperformedusingapreviouslyoptimizedacroleave,reportedinFigure4b.ThegeometryofthecavehasbeenptomimictherealsolidstatepolymericstructureofformedMIP.Bindingenergiesoffourspecies,selectedduetotheirpresenceingroundwaterandsoilandstructuralsimilaritiesto,havebeencalculated.ThereportedinFigure5.Thedensityfunctionaltheory,15DFT,methodwiththeB3LYP16−18functionalhasbeenappliedtooptimizeallselectedspeciesandtheircomplexeswith2,4,6trinitrotolueneandtoperformsolventstudies.Nosymmetryconstraintswereimposedduringthegeometryoptimizationprocesses.Geometrysearchesforavarietyofpossibleconfigurationswereperformedtoobtaintheglobalminimum,whichhasbeenverifiedbyDFTvibrationalfrequencycalculations.ThestandardPoplebasisset,631G(d,p),wasusedinthisstudy.19Basissetsuperpositionerror,20,21BSSE,hasbeenludedincalculationsofthetotalbindingenergyof1:1complexesandtheircomponents.TheeffectofthesolventonthestudiedsystemswasmodeledbytheCPCMmodel.22CalculationspresentedinthisworkhavebeencarriedoututilizingtheGaussian0323suiteofprograms.RESULTSANDSix,themostpopular,monomersusedformolecularimprinting,MI,havebeenselectedforcomputationalstudyofmonomer−tem tecomplexformationoccurringduringimprintingof2,4,6 .Studyreportsbindingenergy,BE,hydrogenbondingdistancesandmonomer− BEaffectedbythepresenceofsolvent.Thisworkreferstopreviouslyreportedmodels13,14designedformodelingofmonomerselfassemblyprocessoccurringduringmolecularimprintingofselectednitrocoumpounds,wherethemosteffectivebindingsiteforthefunctionalmonomer(acrylicormethacrylicacid)involvesthemethylgroupandorthopositionednitrogroupofthenitroaromatic’smolecule.Asacontinuation,thisworkpresentssummaryofmonomer−temtebindingpropertiesforaliphatic(acrolein,acrylonitrile,methylmethacrylate),andaromatic(2,6bisacrylamide,4ethylenebenzoicacid,and2vinylpyridine)functionalmonomersinctingwith2,4,6.Bindingenergies,BE,andbindingdistancesforallsixstudiedcomplexes,calculatedinagasphase,andselectedcalculatedinthegasphase,decreasefrom7.03kcal/molfor2ethylenebenzoicacid to3.10kcal/molforthe2vinylpyridNTin ctingsystems.Gasphasecalculatedbindingenergieshavebeencorrectedbycounterpoisecorrectioncalculations.BSSElowersthevalueofBEforabout2.5kcal/mol,which,accordingtoGrabowski,24classifiesthemamongweakhydrogeninctions.Monomer−temteFigure3.1:1model ctingwithmonomer

TakingintoaccountafactthattheMIpolymerizationprocessoccursinasolution,itiscrucialtomimicsolventTable1.BondingPropertiesofStudiedMonomer−TemteComplexes luding:BindingEnergies,BE,CalculatedinaGasPhaseasWellasSelectedSolvents,andHydrogenBindingDistancesaBEinagasCOHCHOC≡NHCHOCHONHONOringHOHOCOCmethylCOHCHOCHOringNHCHOCHOaCalculationsperformedattheB3LYP/631G(d,p)leveloftheory.Energiesinkcal/mol,anglesinFigure5.Structuresofselectedorganicmoleculespresentinacetone,acetonitrile,ormethanolresultsindisintegrationofthecomplex(nomonomer−temteinctionisobserved).Hence,thosethreesolventsmaynotbethebestmediumforimprintingwith2,6bisacrylamideor4ethylenebenzoicFigure4.Cavemodelofencapsulatedinpolymerandemptycave(modelsforacroleinand2vinylpyridine).environmentomputationalstudies.Oneofthegoalsofthisworkistoprovidesolventysisforthepolymerizationprocess,andoverallhelpwithselectionofthebestsolventforimprintingof pounds.UsingtheCPCM22solvationmodelattheDFTleveloftheory,weattempttoinstigateandtemteduringselfassembly.Acetone,acetonitrile,chloroform,andmethanolhavebeenselectedforindividualstudyoftheirinfluenceonBE.AspresentedinTable1,introductionofsolventdramaticallychangesthevalueofBEwhencomparedtoonecalculatedinthegasphase.Themostspectaculareffectonbindingenergycanbeobservedfortheethylenebenzoicacid−systems,whereadditionof

Outofthreeinitiallyselectedaromaticfunctionalmonomersonly2vinylpyridinehasapotentialformolecularimprintingofnitrocoumpoundsinthepresenceofallfourstudiedsolvents.The2vinylpyrid NTcalculatedBEfora1:1ratio te)insolventsolutionamountsto0.56kcal/molforacetonitrileand2.36kcal/molforchloromonomer−inction,reportedinTable1showthefollowingtrends:Allfourstudiedsolventsaresuitableformolecularimprintingof poundtemte.InallcalculatedcasesthevalueofBEdecreasesintheorderacrolein>methylmethacrylate>acrylonitrileformonomer−temtecomplexes.about1.5kcal/mol)whencomparedtoBEsofstudiedaromaticsystems.Cavemodelsforimprinting,usingacroleinand2vinylpyridinemonomers,havebeendesignedtocreatemoreinFigure4.Inthefirstmodelthemoleculehasbeensurroundedbysixacroleindimersandinthesecondbyfourvinylpyridinedimers.Cave−temtebindingenergiesinagasphaseandsolventshavebeenreportedinTable2.TheysisTable2.BondingEnergies,BE,forStudiedCave−TemteComplexesCalculatedinaGasPhaseandSelectedSolventsaBEina BEin BEin BEin BEincavetemtegasphasemethanolacetonechloroformacetonitrileaCalculationswereperformedattheB3LYP/631G(d,p)leveloftheory.Energiesareinkcal/mol.ofcollecteddatashowsthatintroductionofthechloroformthefortheacroleinecaveand9.47kcal/molforthe2vinylpyridinecave.Introductionofothersolventslowerscave−temtebindingenergiesevenmoresignificantly.However,allcomputationallystudiedsolventsseemstobesuitableasamediumforthe imprintingwithacroleinand2Finally,theacroleavemodelhasbeenusedtostudytheselectivityofacrolinbasedMIPtowardthemolecule.AsacroleinbasedMIPisasolidstatepolymer,inourstudythegeometryoftheacroleavemodelhasbeenp.Nosymmetryconstraintshavebeenimposedonthefourspecieschosenfortheselectivitystudy.Thesepollutantshavebeenselectedduetotheirstructuralresemblancetoandallfourspeciesandtheacroleavehavebeencalculatedinagasphase.ThestudyindicatesthatbothDNTmoleculesbindtotheacrole avebutthebindingenergyissignificantlysmallerthanfor ,reportedas21.59kcal/mol.Bindingenergiesare10.98and3.73kcal/molfor2,4DNTand2,6DNT,respectively.PCPandDicambadonotbindtotheacroleave;performedcalculationsshowthattheyarestronglyrepelledbythecave.■Onthebasisoftheperformedcalculations,outofthesetoffourstudiedsolventsthemostuniversalsolventforMIPof,regardlessofthetypeofusedfunctionalmonomer,seemstobechloroform.Acetone,acetonitrile,andmethanolareproposedtobeusedforaliphaticmonomerimprintingorfortemteextractionofaromaticmonomers,withtheexceptionof2vinylpyridine.■AUTHOR446■Theauthorsdeclarenocompetingfinancial■ThisprojectissupportedbytheU.S.DepartmentofDefensethroughtheEngineer,ResearchandDevelopmentCenter(Vicksburg,MS),Contract#W912HZ10C0107,andTheMississippiCenterfor putingResearch(MCSR).

■Jo,S.H.;Lee,S.Y.;Park,K.M.;Yi,S.C.;Kim,D.;Mun,S.J.Chromatogr.A2010,45,7100−7108.■Pap,T.;Horvath,V.;Tolokan,A.;Horvai,G.;Sellergen,B.J.Chromatogr.A2002,973,1−12.Purif.Technol.2004,38,173−179.Alizadeh,T.;Zare,M.;Ganjali,M.R.;Norouzi,P.;Tavana,Biosens.Bioelect.2010,25,Cormack,P.A.G.;Elorza,A.Z.J.Chromatogr.B2004,804,Politzer,P.;Murray,J.S.;Koppes,W.M.;Concha,M.C.;P.Cent.Eur.J.Energet.Mater.2009,6,Clarkson,J.;Smith,W.E.;Batcheldar,D.N.;Smith,D.A.;Coats,A.M.J.Mol.Struct.2003,648,203−214.Bunte,G.;Hurttlen,J.;Pontius,H.;Hartlieb,K.;Krause,Saloni,J.;Dasary,S.S.R.;Yerramilli,A.;Yu,H.;Hill,G.,Hill,G.,Jr.Polymer2011,52,1206−1216.Molecules;OxfordUniversityPress:NewYork,1994.Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B1988,37,Simon,S.;Duran,M.;Dannenberg,J.J.J.Chem.Phys.105,Boys,S.F.;Bernardi,F.Mol.Phys.1970,19,83,Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;etal.Gaussian03,revisionC02;Gaussian.:Pittsburgh,PA,2004.Grabowski,S.Annu.Rep.Prog.Chem.Sect.C2006,102,Copiah-LolnCommunityCollege,11Co-L ircle,Natchez,Mississippi39120,UnitedStatesDepartmentofChemistryandBiochemistry,JacksonStateUniversity,1400J.R.LynchStreet,Jackson,Mississippi39217,UnitedStates 丙烯醛、丙烯腈、2,6-双丙烯酰胺、4-亚乙基苯甲酸、甲基丙烯酸甲酯和2-乙烯基吡啶。还提出四种溶剂的模板结合能:丙酮、乙腈、氯仿和甲醇。此外,还有2,4-二硝基甲苯(2,4-DNT)、2,62,6-DNT(PCP)3,6-二氯-2Dicamba用于研究基于丙烯醛的MIP对检测的选择性。密度泛函理论(DFT)方法已用于所有结构、.MI1,23,4、5,67,819MIP2,4,6-三硝基甲苯,10,115,126因,需要对其进行检测。除了造成直接危险外,作为一种爆炸性物质,这种物质还会污染土壤和地下水。6因此,有人建议应用MIP技术来检测并尽可能去除环境中的及其衍生物。在型如图1所示。MIP过程:(A)自组装;(B)聚合;(C)溶剂萃取。MIPFT-IR香族和脂肪族单体进行理论计算,以选择最适合印迹的单体。如图2所示,研究的单体包括丙烯醛、丙烯腈、2,6-双丙烯酰胺、42-乙烯基吡啶。四种最常见溶剂(丙酮、乙腈、氯仿和甲醇)对1:1单体的影响。temte和选定的Cave.temteMIP:20111226:20131162013123物理化学杂志A》针对的检测进行了研究,使用洞穴模型与2,4-DNT、2,6-DNT、PCP和麦草畏分子(作为可能的竞争者)相互作用。总的来说,这项工作旨在为硝基芳香族化合物分子MIP2.发的印迹1:1模型,14其中通过氢键与单个单体分子相互作用。虽然单体相对于如图3所示,单体(丙烯醛)与甲基和对位相互作用。分子的邻硝基通过氢键连接。设计了两个由脂肪族和芳香族单体制成的洞穴模型(表1中下划线),用于研究溶剂对结合能的影响。.rst模型中的洞穴(图4a)由十二个丙烯醛分子组成,在模板周围形成六个二聚4b2-乙烯基吡啶分子构成,在周围形成四个二聚体,如图4c所示。图4d显示了一个空的2-乙烯基吡啶洞穴。MIP对分子的选择性研究是使用先前优化的丙烯醛洞进行的,如图4b所示。洞穴的几何形MIP由于它们存在于地下水和土壤中并且与结构相似而被选择的。2,4-DNT、2,6-DNT、PCP和麦草畏的结构如图5所示。密度泛函理论、15DFT、B3LYP16.182,4,6-三硝基何搜索以获得全局最小值,这已通过DFTPople19BSSE)1:1究系统的影响通过CPCM22Gaussian03233.结果和讨论六种最流行的用于分子印迹的单体,MI,已被选择用于2,4,6- 生的单体.模板复合物形成的计算研究。研究报告了结合能、BE、氢键距离和单体。BE受溶剂甲基丙烯酸甲酯)和芳香族(2,6-双丙烯酰胺、4-乙烯苯甲酸和2-乙烯基吡啶)功能单体与2、4,6-梯恩梯。表1报告了所有六种研究复合物在气相中计算的结合能、BE和结合距离以及所选溶剂。在气相中计算的BE的呈现值从2-的7.03kcal/mol降低对于2-乙烯基吡啶.相互作用系统,乙烯苯甲酸-至3.10kcal/mol。气相计算的结合能已通过平衡校正计算进行校正。BSSE使BE值降低约2.5kcal/mol,根据G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论