辽宁省沈阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第1页
辽宁省沈阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第2页
辽宁省沈阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第3页
辽宁省沈阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第4页
辽宁省沈阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数满足,则的最大值为()A.3 B.4 C.5 D.62.若且;则的展开式的系数是()A. B. C. D.3.的展开式中,各项系数的和为32,则该展开式中x的系数为()A.10 B. C.5 D.4.已知抛物线,过点的任意一条直线与抛物线交于两点,抛物线外一点,若∠∠,则的值为()A. B. C. D.5.已知函数在处取得极值,对任意恒成立,则A. B. C. D.6.已知,的线性回归直线方程为,且,之间的一组相关数据如下表所示,则下列说法错误的为A.变量,之间呈现正相关关系 B.可以预测,当时,C. D.由表格数据可知,该回归直线必过点7.若,则s1,s2,s3的大小关系为()A.s1<s2<s3 B.s2<s1<s3 C.s2<s3<s1 D.s3<s2<s18.设复数满足,则()A. B. C. D.9.函数y=x2㏑x的单调递减区间为A.(1,1] B.(0,1] C.[1,+∞) D.(0,+∞)10.的展开式中,系数最小的项为()A.第6项 B.第7项 C.第8项 D.第9项11.设,则的定义域为().A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)12.已知命题p:,.则为().A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知角的终边与单位圆交点的横坐标是,则的值是.14.用反证法证明命题:“定义在实数集上的单调函数的图象与轴至多只有个交点”时,应假设“定义在实数集上的单调函数的图象与轴__________”.15.把10个相同的小球全部放入编号为1,2,3的三个盒子中,要求每个盒子中的小球数不小于盒子的编号数,则不同的方法共有___________种16.若函数的最小正周期为,则的值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知四棱锥的底面是边长为2的正方形,底面,.(1)求直线与平面所成的角的大小;(2)求四棱锥的侧面积.18.(12分)如图,在底边为等边三角形的斜三棱柱ABC﹣A1B1C1中,AA1AB,四边形B1C1CB为矩形,过A1C作与直线BC1平行的平面A1CD交AB于点D.(Ⅰ)证明:CD⊥AB;(Ⅱ)若AA1与底面A1B1C1所成角为60°,求二面角B﹣A1C﹣C1的余弦值.19.(12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01)(若,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:周光照量(单位:小时)光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数,参考数据:,,,20.(12分)已知函数,数列的前项和为,点()均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前项和,求使得对所有都成立的最小正整数.21.(12分)已知函数当时,讨论的导函数在区间上零点的个数;当时,函数的图象恒在图象上方,求正整数的最大值.22.(10分)如图,在边长为的正方形中,点是的中点,点是的中点,点是上的点,且.将△AED,△DCF分别沿,折起,使,两点重合于,连接,.(Ⅰ)求证:;(Ⅱ)试判断与平面的位置关系,并给出证明.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.【详解】作出不等式组对应的平面区域如图:(阴影部分).设得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大.由,解得,即,代入目标函数得.即目标函数的最大值为1.故选B.【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.2、C【解析】

先根据求出,再代入,直接根据的展开式的第项为,即可求出展开式的系数。【详解】因为且所以展开式的第项为展开式中的系数为故选C【点睛】本题考查二项式展开式,属于基础题。3、A【解析】

令得各项系数和,求得,再由二项式定理求得展开式中x的系数.【详解】令得,,二项式为,展开式通项为,令,,所以的系数为.故选:A.【点睛】本题考查二项式定理,考查二项展开式中各项系数的和.掌握二项式定理是解题关键.赋值法是求二项展开式中各项系数和的常用方法.4、D【解析】

设出点和直线,联立方程得到关于的韦达定理,将转化为斜率相反,将根与系数关系代入得到答案.【详解】设,设直线AB:又恒成立即答案为D【点睛】本题考查了直线和抛物线的位置关系,定点问题,设直线方程时消去可以简化运算,将角度关系转化为斜率关系是解题的关键,计算量较大,属于难题.5、C【解析】分析:根据函数在处取得极值解得,由于,对任意恒成立,则,确定的值。再由三次函数的二阶导数的几何意义,确定的对称中心,最后求解。详解:已知函数在处取得极值,故,解得。对任意恒成立,则,对任意恒成立,则所以.所以函数表达式为,,,令,解得,由此,由三次函数的性质,为三次函数的拐点,即为三次函数的对称中心,,所以,.故选C。点睛:在某点处的极值等价于在某点处的一阶导函数的根,二阶导函数的零点的几何意义为函数的拐点,三次函数的拐点的几何意义为三次函数的对称中心。二阶导函数的零点为拐点,但不是所有的拐点都为对称中心。6、C【解析】

A中,根据线性回归直线方程中回归系数0.82>0,判断x,y之间呈正相关关系;B中,利用回归方程计算x=5时的值即可预测结果;C中,计算、,代入回归直线方程求得m的值;D中,由题意知m=1.8时求出、,可得回归直线方程过点(,).【详解】已知线性回归直线方程为0.82x+1.27,0.82>0,所以变量x,y之间呈正相关关系,A正确;计算x=5时,0.82×5+1.27=5.37,即预测当x=5时y=5.37,B正确;(0+1+2+3)=1.5,(0.8+m+3.1+4.3),代入回归直线方程得0.82×1.5+1.27,解得m=1.8,∴C错误;由题意知m=1.8时,1.5,2.5,所以回归直线方程过点(1.5,2.5),D正确.故选C.【点睛】本题考查了线性回归方程的概念与应用问题,是基础题.7、B【解析】选B.考点:此题主要考查定积分、比较大小,考查逻辑推理能力.8、D【解析】分析:先根据复数除法得,再根据复数的模求结果.详解:因为,所以,因此选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为9、B【解析】对函数求导,得(x>0),令解得,因此函数的单调减区间为,故选B考点定位:本小题考查导数问题,意在考查考生利用导数求函数单调区间,注意函数本身隐含的定义域10、C【解析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C。11、B【解析】试题分析:要使函数有意义,则解得,有意义,须确保两个式子都要有意义,则,故选.考点:1.函数的定义域;2.简单不等式的解法.12、C【解析】

因为特称命题的否定是全称命题,即改变量词又否定结论,所以p:,的否定:.故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:由题意得.考点:三角函数的定义;同角三角函数的基本关系式;诱导公式.14、至少有个交点【解析】分析:反证法证明命题,只否定结论,条件不变。详解:命题:“定义在实数集上的单调函数的图象与轴至多只有个交点”时,结论的反面为“与轴至少有个交点”。点睛:反证法证明命题,只否定结论,条件不变,至多只有个理解为,故否定为.15、15【解析】

将编号为的三个盒子中分别放入个小球,从而将问题转变为符合隔板法的形式,利用隔板法求解得到结果.【详解】编号为的三个盒子中分别放入个小球,则还剩个小球则问题可变为求个相同的小球放入三个盒子中,每个盒子至少放一个球的不同方法的种数由隔板法可知共有:种方法本题正确结果:【点睛】本题考查隔板法求解组合应用问题,关键是能够首先将问题转化为符合隔板法的形式,隔板法主要用来处理相同元素的组合问题.16、【解析】试题分析:考点:三角函数周期【方法点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先得到平面的垂线,可得即为所求角;(2)容易证明侧面的各个面均为直角三角形,有勾股定理求出各棱长后,将面积求和即可【详解】解:(1)底面是正方形,,底面,底面,,平面,直线与平面所成的角为,(2)由题可知,侧面由,,,四个三角形构成由(1)知,,,即是直角三角形【点睛】本题考查线面角,考查侧面积,考查线面垂直,考查运算能力18、(Ⅰ)见解析;(Ⅱ)【解析】

(Ⅰ)连接AC3交A3C于点E,连接DE.推导出BC3∥DE,由四边形ACC3A3为平行四边形,得ED为△AC3B的中位线,从而D为AB的中点,由此能证明CD⊥AB.(Ⅱ)过A作AO⊥平面A3B3C3垂足为O,连接A3O,以O为原点,以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,利用向量法能求出二面角B﹣A3C﹣C3的余弦值.【详解】(Ⅰ)连接AC3交A3C于点E,连接DE.因为BC3∥平面A3CD,BC3⊂平面ABC3,平面ABC3∩平面A3CD=DE,所以BC3∥DE.又因为四边形ACC3A3为平行四边形,所以E为AC3的中点,所以ED为△AC3B的中位线,所以D为AB的中点.又因为△ABC为等边三角形,所以CD⊥AB.(Ⅱ)过A作AO⊥平面A3B3C3垂足为O,连接A3O,设AB=3.因为AA3与底面A3B3C3所成角为60°,所以∠AA3O=60°.在Rt△AA3O中,因为,所以,AO=2.因为AO⊥平面A3B3C3,B3C3⊂平面A3B3C3,所以AO⊥B3C3.又因为四边形B3C3CB为矩形,所以BB3⊥B3C3,因为BB3∥AA3,所以B3C3⊥AA3.因为AA3∩AO=A,AA3⊂平面AA3O,AO⊂平面AA3O,所以B3C3⊥平面AA3O.因为A3O⊂平面AA3O,所以B3C3⊥A3O.又因为,所以O为B3C3的中点.以O为原点,以的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,如图.则,C3(0,﹣3,0),A(0,0,2),B3(0,3,0).因为,所以,,因为,所以,,,,.设平面BA3C的法向量为=(x,y,z),由得令,得z=3,所以平面BA3C的一个法向量为.设平面A3CC3的法向量为=(a,b,c),由得令,得b=﹣2,c=3,所以平面A3CC3的一个法向量为.所以,因为所求二面角为钝角,所以二面角B﹣A3C﹣C3的余弦值为.【点睛】本题考查线线垂直的证明,考查二面角、空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.19、(1),可用线性回归模型拟合y与x的关系;(2)2台光照控制仪.【解析】

(1)由题中所给的数据计算,进而结合参考数据计算相关系数,得出答案;(2)记商家周总利润为Y元,由条件可知至少需要安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元;②安装2台光照控制仪有2种情形:做出分布列即可求解.【详解】(1)由已知数据可得,所以相关系数因为,所以可用线性回归模型拟合y与x的关系.(2)记商家周总利润为Y元,由条件可知至少需要安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元;②安装2台光照控制仪的情形:当X>70时,只有1台光照控制仪运行,此时周总利润Y=3000﹣1000=2000元,当30<X≤70时,2台光照控制仪都运行,此时周总利润Y=2×3000=6000元,故Y的分布列为:Y20006000P0.20.8所以E(Y)=1000×0.2+5000×0.7+9000×0.1=4600元.综上可知,为使商家周利润的均值达到最大应该安装2台光照控制仪.【点睛】本题考查了线性回归方程的求法及应用,分布列的求法,利润的计算,属于中档题.20、(1);(2)1.【解析】分析:(1)由已知条件推导出,由此能求出;(2)由,利用裂项求和法求出,由此能求出满足要求的最小整数.详解:(1)当时,当时,符合上式综上,(2)所以由对所有都成立,所以,得,故最小正整数的值为.点睛:利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.21、(1)当时,在存在唯一零点;当时,在没有零点(2)【解析】

(1)首先求,令,然后求,讨论当时,,判断函数的单调性和端点值,判断函数是否有零点;当时,同样是判断函数的单调性,然后结合零点存在性定理,可判断函数是否存在零点;(2)由,参变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论