版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/专题03绝对值的几何意义类型一求两个绝对值和的最小值1.数学实验室:我们知道,在数轴上,|a|表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A、B,分别表示有理数a、b,那么A、B两点之间的距离AB=|a-b|.利用此结论,回答以下问题:(1)数轴上表示1和5的两点之间的距离是______,数轴上表示1和-5的两点之间的距离是______.(1+1分,注意写出最后结果)(2)式子|x+2|可以看做数轴上表示x和______的两点之间的距离.(3)式子|x+2|+|x-3|的最小值是______.(4)当|x+2|+|x-3|取得最小值时,数x的取值范围是______.2.我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几何意义,进一步地,数轴上两个点A、B,分别用a和b表示,那么A、B两点之间的距离为AB=|a﹣b|利用此结论,回答以下问题:(1)数轴上表示3和7的两点之间的距离是,数轴上表示﹣3和﹣7的两点之间的距离是,数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A、B之间的距离是,如果|AB|=3,那么x的值为;(3)当代数式|x﹣1|+|x﹣3|取最小值时,相应的x的取值范围是多少?最小值是多少?(4)已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b﹣1)2=0,设点P在数轴上对应的数是x,当|PA|﹣|PB|=2时,求x的值.3.“数形结合”是重要的数学思想.如:表示3与差的绝对值,实际上也可以理解为3与在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B,所对应的数分别用a,b表示,那么A,B两点之间的距离表示为.利用此结论,回答以下问题:(1)数轴上表示和5两点之间的距离是__________.(2)若,则______.(3)若x表示一个有理数,的最小值为_________.(4)已知数轴上两点A、B对应的数分别为,8,现在点A、点B分别以3个单位长度/秒和2单位长度/秒的速度同时向右运动,当点A与点B之间的距离为2个单位长度时,求点A所对应的数是多少?4.认真阅读下面的材料,完成问题.在学习绝对值时,我们知道绝对值的几何含义为数轴上一点到原点的距离.如|5|意义为表示5的点到原点的距离,实际上可理解为,|5|=|5-0|,即5到0点的距离.又如|5-3|表示5、3在数轴上对应的两点之间的距离;|5-(-3)|表示5、-3在数轴上对应的两点之间的距离,容易知道|5-(-3)|=|5+3|=8.即5与-3相距8个单位长度.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a-b|.(1)利用上面的知识回答:点A、B在数轴上分别表示有理数-5、1,那么A到B的距离可表示为,这个距离的计算结果是;(2)利用上面的知识回答:若|x-1|=2,则x=;(3)利用上面的知识回答:|x-2|+|x+1|的最小值是.5.我们知道,可以理解为,它表示:数轴上表示数的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点,分别用数表示,那么两点之间的距离为,反过来,式子的几何意义是:数轴上表示数的点和表示数的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数的点和表示数的点之间的距离是__________.(2)数轴上点用数表示,若,那么的值为_________.(3)数轴上点用数表示:①若,那么的值是________.②当时,数的取值范围是________,这样的整数有________个.③有最小值,最小值是___________.类型二求多个绝对值和的最小值6.我们知道,表示数对应的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点、分别表示数、,那么.利用此结论,回答下列问题:(1)数轴上表示2和5的两点之间的距离是_____,数轴上表示和的两点之间的距离是_____,数轴上表示1和的两点之间的距离是____;(2)数轴上表示和-1的两点、之间的距离是____,如果=2,那么的值为_____;(3)写出表示的几何意义:_____,该式的最小值为______;(4)的最小值_____.7.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A表示的数记为a,点B表示的数记为b,则A,B两点间的距离就可记作.回答下列问题:(1)几何意义是数轴上表示数2的点与数的点之间的距离的式子是________;式子的几何意义是_______________________;(2)根据绝对值的几何意义,当时,________;(3)探究:的最小值为_________,此时m满足的条件是________;(4)的最小值为________,此时m满足的条件是__________.8.我们知道,在数轴上,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用a,b表示,那么A、B两点之间的距离为:AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示﹣20和﹣5的两点之间的距离是.(2)数轴上表示x和﹣1的两点A,B之间的距离是.(3)式子|x+1|+|x﹣2|+|x﹣3|的最小值是.(4)结合数轴求的最小值为,此时符合条件的整数x为.(5)结合数轴求的最小值为,此时符合条件的整数x为.(6)结合数轴求的最小值为,最大值为.9.阅读理解;我们知道,若A、B在数轴上分别表示有理数、,A、B两点间的距离表示为AB,则.所以的几何意义是数轴上表示X的点与表示2的点之间的距离.根据上述材料,解答下列问题:(1)若点A表示-2,点B表示3,则AB=.(2)若,则的值是.(3)如果数轴上表示数的点位于-4和2之间,求的值;(4)点取何值时,取最小值,最小值是多少?请说明理由;(5)直接回答:当式子取最小值时,相应的取值范围是多少?最小值是多少?10.我们知道,|a|表示数a到原点的距离,这是绝对值的几何义.进一步地,数轴上两个点A、B,分别用a,b表示,那么AB=|a-b|.(思考一下,为什么?),利用此结论,回答以下问题:(1)数轴上表示2和5的两点之间的距离是______,数轴上表示-2和-5的两点之间的距离是_____,数轴上表示1和-3的两点之间的距离是_______;(2)数轴上表示x和-1的两点A、B之间的距离是_______,如果|AB|=2,那么x的值为_______;(3)当x取何值时,式子|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值最小,并求出这个最小值.11.我们知道,表示数对应的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点分别表示数,那么两点之间的距离为.利用此结论,回答下列问题:(1)数轴上表示3和-3的两点之间的距离是;(2)数轴上表示和-1的两点之间的距离为2,那么的值为;(3)直接写出的最小值为;(4)直接写出的最小值为;(5)简要求出的最小值.类型三利用绝对值的几何意义解方程12.阅读理解;我们知道」x丨的几何意义是在数轴上数x对应的点与原点的距离,即丨x丨=丨x-0丨,也就是说丨x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:丨x-y丨表示在数轴上数x、y对应点之间的距离.在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.②在方程丨x-1丨=2中,x的值就是数轴上到1的距离为2的点对应的数,所以该方程的解是x=3或x=-1.知识运用:根据上面的阅读材料,求下列方程的解(1)方程|x|=5的解(2)方程|x-2|=3的解13.阅读下列材料:我们知道表示的是在数轴上数对应的点与原点的距离,即,也就是说,对表示在数轴上数与数0对应点之间的距离.这个结论可以推广为表示在数轴上数,对应点之间的距离.例1解方程.解:∵,∴在数轴上与原点距离为6的点对应的数为,即该方程的解为.例2解不等式.解:如图,首先在数轴上找出的解,即到1的距离为2的点对应的数为,3,则的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为或.参考阅读材料,解答下列问题:(1)方程的解为______;(2)解不等式;(3)若,则的取值范围是_______;(4)若,则的取值范围是_______.14.我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:(1)方程|x|=5的解是_______________.(2)方程|x﹣2|=3的解是_________________.(3)画出图示,解方程|x﹣3|+|x+2|=9.15.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为的点的对应数为和,即的值为和.例2:已知,求的值.解:在数轴上与的距离为的点的对应数为和,即的值为和.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.类型四利用绝对值的几何意义解不等式16.解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为________.(2)解不等式|x-3|+|x+4|≥9;(3)若|x-3|+|x+4|≥a对任意的x都成立,求a的取值范围.17.阅读下列材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即=,也就是说,表示在数轴上数与数0对应的点之间的距离;这个结论可以推广为表示在数轴上数与数对应的点之间的距离;例1解方程||=2.因为在数轴上到原点的距离为2的点对应的数为,所以方程||=2的解为.例2解不等式|-1|>2.在数轴上找出|-1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|-1|=2的解为=-1或=3,因此不等式|-1|>2的解集为<-1或>3.例3解方程|-1|+|+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的对应的点在1的右边或-2的左边.若对应的点在1的右边,可得=2;若对应的点在-2的左边,可得=-3,因此方程|-1|+|+2|=5的解是=2或=-3.参考阅读材料,解答下列问题:(1)方程|+2|=3的解为;(2)解不等式:|-2|<6;(3)解不等式:|-3|+|+4|≥9;(4)解方程:|-2|+|+2|+|-5|=15.18.阅读下列材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即=,也就是说,表示在数轴上数与数0对应的点之间的距离;这个结论可以推广为表示在数轴上数与数对应的点之间的距离;例1.解方程||=2.因为在数轴上到原点的距离为2的点对应的数为,所以方程||=2的解为.例2.解不等式|-1|>2.在数轴上找出|-1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|-1|=2的解为=-1或=3,因此不等式|-1|>2的解集为<-1或>3.
例3.解方程|-1|+|+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延安大学《数据结构与算法》2021-2022学年第一学期期末试卷
- 制定家庭财务规划的策略计划
- 烟台大学《编译原理》2022-2023学年第一学期期末试卷
- 许昌学院《计算机技术实训》2021-2022学年第一学期期末试卷
- 秋季服务性学习项目计划
- 施工项目紧急情况应急响应
- 股权收购借款合同三篇
- 中华传统乐器社团的表演计划
- 多元文化教育在课堂中的实践计划
- 小班促进语言发展的游戏设计计划
- 供电企业舆情的预防及处置
- 2024年度糖尿病2024年指南版课件
- 《古文观止》:古代文学的精华集萃
- 新职工医德医风培训课件
- 4、《通向金融王国的自由之路》
- 湖北省武汉市武昌区2021-2022学年八年级上学期期末调研英语试卷(文本版含答案)
- 高血压病例教学查房
- 医院设计报告
- 关于书香家庭阅读情况简介【六篇】
- 心梗合并消化道出血的治疗
- 铲车司机技术培训课件
评论
0/150
提交评论