湖南省益阳市、湘潭市2022-2023学年数学高二第二学期期末综合测试试题含解析_第1页
湖南省益阳市、湘潭市2022-2023学年数学高二第二学期期末综合测试试题含解析_第2页
湖南省益阳市、湘潭市2022-2023学年数学高二第二学期期末综合测试试题含解析_第3页
湖南省益阳市、湘潭市2022-2023学年数学高二第二学期期末综合测试试题含解析_第4页
湖南省益阳市、湘潭市2022-2023学年数学高二第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁4个人跑接力赛,则甲乙两人必须相邻的排法有()A.6种 B.12种 C.18种 D.24种2.已知,,且,若,则()A. B. C. D.3.甲乙丙丁四人参加数学竞赛,其中只有一位获奖.有人走访了四人,甲说:“乙、丁都未获奖.”乙说:“是甲或丙获奖.”丙说:“是甲获奖.”丁说:“是乙获奖.”四人所说话中只有两位是真话,则获奖的人是()A.甲 B.乙 C.丙 D.丁4.某班制定了数学学习方案:星期一和星期日分别解决个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有()A.种 B.种 C.种 D.种5.在椭圆内,通过点,且被这点平分的弦所在的直线方程为()A. B.C. D.6.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取岀一个球放入乙罐,分别以,,表示由甲罐取岀的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中不正确的是()A.事件与事件不相互独立 B.,,是两两互斥的事件C. D.7.设定点,动圆过点且与直线相切.则动圆圆心的轨迹方程为()A. B. C. D.8.如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为36,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为二项式的展开式的各项系数之和.现从0,1,2,3,4,5中任取两个不同的数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A. B. C. D.9.若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则().A. B. C. D.10.已知在处有极值0,且函数在区间上存在最大值,则的最大值为()A.-6 B.-9 C.-11 D.-411.已知,,,则下列说法正确是()A. B.C.与的夹角为 D.12.已知双曲线上有一个点A,它关于原点的对称点为B,双曲线的右焦点为F,满足,且,则双曲线的离心率e的值是A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.根据所示的伪代码,若输入的的值为-1,则输出的结果为________.14.用反证法证明“若,则”时,应假设______.15.若实数满足,且,则_____.16.为虚数单位,若复数是纯虚数,则实数_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,其中。表示集合A中任意两个不同元素的和的不同值的个数。(1)若,分别求和的值;(2)若集合,求的值,并说明理由;(3)集合中有2019个元素,求的最小值,并说明理由。18.(12分))已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.19.(12分)函数,,实数为常数.(I)求的最大值;(II)讨论方程的实数根的个数.20.(12分)中,三内角所对的边分别为,已知成等差数列.(Ⅰ)求证:;(Ⅱ)求角的取值范围.21.(12分)阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:0项1项2项3项4项5项5项以上理科生(人)110171414104文科生(人)08106321(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?比较了解不太了解合计理科生文科生合计(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.(i)求抽取的文科生和理科生的人数;(ii)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.参考数据:0.1000.0500.0100.0012.7063.8416.63510.828,.22.(10分)[选修4—4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

甲乙两人捆绑一起作为一个人与其他2人全排列,内部2人全排列.【详解】因为甲乙两人必须相邻,看成一个整体,所以甲乙两人必须相邻的排法有种,故选:B.【点睛】本题考查排列问题,相邻问题用捆绑法求解.2、B【解析】当时有,所以,得出,由于,所以.故选B.3、C【解析】

本题利用假设法进行解答.先假设甲获奖,可以发现甲、乙、丙所说的话是真话,不合题意;然后依次假设乙、丙、丁获奖,结合已知,选出正确答案.【详解】解:若是甲获奖,则甲、乙、丙所说的话是真话,不合题意;若是乙获奖,则丁所说的话是真话,不合题意;若是丙获奖,则甲乙所说的话是真话,符合题意;若是丁获奖,则四人所说的话都是假话,不合题意.故选C.【点睛】本题考查了的数学推理论证能力,假设法是经常用到的方法.4、A【解析】分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.详解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,所以共有=141种.故选:A.点睛:本题考查组合知识的运用,考查学生分析解决问题的能力,确定中间“多一个”或“少一个”的天数必须相同是关键.5、A【解析】试题分析:设以点为中点的弦的端点分别为,则,又,两式相减化简得,即以点为中点的弦所在的直线的斜率为,由直线的点斜式方程可得,即,故选A.考点:直线与椭圆的位置关系.6、C【解析】

依次判断每个选项得到答案.【详解】A.乙罐取出的球是红球的事件与前面是否取出红球相关,正确B.,,两两不可能同时发生,正确C.,不正确D.,正确故答案选C【点睛】本题考查了独立事件,互斥事件,条件概率,综合性强,意在考查学生的综合应用能力和计算能力.7、A【解析】

由题意,动圆圆心的轨迹是以为焦点的抛物线,求得,即可得到答案.【详解】由题意知,动圆圆心到定点与到定直线的距离相等,所以动圆圆心的轨迹是以为焦点的抛物线,则方程为故选A【点睛】本题考查抛物线的定义,属于简单题.8、B【解析】

先求得二项式的展开式的各项系数之和为.然后利用列举法求得在一共个数字中任选两个,和为的概率,由此得出正确选项.【详解】令代入得,即二项式的展开式的各项系数之和为.从0,1,2,3,4,5中任取两个不同的数字方法有:共种,其中和为的有共两种,所以恰好使该图形为“和谐图形”的概率为,故选B.【点睛】本小题主要考查二项式展开式各项系数之和,考查列举法求古典概型概率问题,属于基础题.9、A【解析】

先求事件A包含的基本事件,再求事件AB包含的基本事件,利用公式可得.【详解】由于6人各自随机地确定参观顺序,在参观的第一小时时间内,总的基本事件有个;事件A包含的基本事件有个;在事件A发生的条件下,在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人的基本事件为个,而总的基本事件为,故所求概率为,故选A.【点睛】本题主要考查条件概率的求解,注意使用缩小事件空间的方法求解.10、C【解析】

利用函数在处有极值0,即则,解得,再利用函数的导数判断单调性,在区间上存在最大值可得,从而可得的最大值.【详解】由函数,则,因为在,处有极值0,则,即,解得或,当时,,此时,所以函数单调递增无极值,与题意矛盾,舍去;当时,,此时,,则是函数的极值点,符合题意,所以;又因为函数在区间上存在最大值,因为,易得函数在和上单调递增,在上单调递减,则极大值为,且,所以,解得,则的最大值为:.故选C.【点睛】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性以及函数单调性,求解参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.11、D【解析】

根据向量运算和向量夹角公式,向量模依次判断每个选项得到答案.【详解】,故,故错误;,故错误;,故,故,错误;,故,正确.故选:.【点睛】本题考查了向量数量积,向量夹角,向量模,意在考查学生的计算能力.12、B【解析】

设是双曲线的左焦点,由题可得是一个直角三角形,由,可用表示出,,利用双曲线定义列方程即可求解.【详解】依据题意作图,如下:其中是双曲线的左焦点,因为,所以,由双曲线的对称性可得:四边形是一个矩形,且,在中,,,,由双曲线定义得:,即:,整理得:,故选B【点睛】本题主要考查了双曲线的简单性质及双曲线定义,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

通过读条件语句,该程序是分段函数,代入即可得到答案.【详解】根据伪代码,可知,当时,,故答案为.【点睛】本题主要考查条件程序框图的理解,难度不大.14、【解析】

反证法假设命题的结论不成立,即反面成立。【详解】假设命题的结论不成立,即反面成立,所以应假设,填。【点睛】反证法的步骤:①假设命题结论不成立,即假设结论的反面成立(反设);②从这个假设出发,经过推理论证,得出矛盾(归谬);③由矛盾判断假设不成立,从而肯定命题的结论成立(结论).15、【解析】

先通过复数代数形式的四则运算法则对等式进行运算,再利用复数相等求出,最后由复数的模的计算公式求出.【详解】因为,所以已知等式可变形为,即,解得,.【点睛】本题主要考查复数代数形式的四则运算法则,复数相等的概念以及复数的模的计算公式的应用.16、-1【解析】分析:利用纯虚数的定义直接求解.详解:∵复数是纯虚数,,

解得.

故答案为-1.点睛:本题考实数值的求法,是基础题,解题时要认真审题,注意纯虚数的定义的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)=5,=10(2)见解析;(3)最小值是4035【解析】

(1)根据题意进行元素相加即可得出和的值;(2)因为共有项,所以.由集合,任取,由此能出的值;(3)不妨设,可得,故中至少有4035个不同的数,即.由此能出的最小值.【详解】(1)由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得=5,由1+2=3,1+4=5,1+8=9,1+16=17,2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得=10.(2)证明:因为共有项,所以.又集合,不妨设,m=1,2,…,n.,当时,不妨设,则,即,当时,,因此,当且仅当时,.即所有的值两两不同,因此.(3)不妨设,可得,故中至少有4035个不同的数,即.事实上,设成等差数列,考虑,根据等差数列的性质,当时,;当时,;因此每个和等于中的一个,或者等于中的一个.所以最小值是4035。【点睛】本题考查,,,的最小值的求法,是中档题,解题时要认真审题,注意集合性质、分类讨论思想的合理运用.18、(1).(2)证明见解析.【解析】分析:(I)由题意,可取,则,,即可猜想;(II)令,则,得到函数的单调性,利用单调性即可证明猜想.详解:(I)取,则,,则有;再取,则,,则有.故猜想.(II)令,则,当时,,即函数在上单调递减,又因为,所以,即,故.点睛:本题主要考查了归纳猜想和利用函数的单调性证明不等关系式,着重考查了分析问题和解答问题的能力,以及推理论证能力.19、(Ⅰ)(Ⅱ)见解析【解析】

(1)直接对函数进行求导,研究函数的单调性,求最大值;(2)对方程根的个数转化为函数零点个数,通过对参数进行分类讨论,利用函数的单调性、最值、零点存在定理等,判断函数图象与轴的交点个数.【详解】(Ⅰ)的导数为.在区间,,是增函数;在区间上,,是减函数.所以的最大值是.(Ⅱ),方程的实数根个数,等价于函数的零点个数..在区间上,,是减函数;在区间上,,是增函数.在处取得最小值.①当时,,没有零点;②当时,有唯一的零点;③当时,在区间上,是增函数,并且.,所以在区间上有唯一零点;在区间上,是减函数,并且,,所以在区间上有唯一零点.综上所述,当时,原方程没有实数根;当时,原方程有唯一的实数根;当时,原方程有两个不等的实数根.【点睛】在使用零点存在定理时,证明在某个区间只有唯一的零点,一定要证明函数在该区间是单调的,且两个端点处的函数值相乘小于0;本题对数形结合思想、函数与方程思想、分类讨论思想等进行综合考查,对解决问题的综合能力要求较高.20、(Ⅰ)见证明;(Ⅱ)【解析】

(Ⅰ)由成等差数列,可得,结合基本不等式和正弦定理可以证明出;(Ⅱ)运用余弦定理可以求出的表达式,利用重要不等式和(Ⅰ)中的结论,可以求出,结合余弦函数的图象和角是三角形的内角,最后可求出角的取值范围.【详解】解:(Ⅰ)成等差数列,,,即,当且仅当时取等号由正弦定理得(Ⅱ)由余弦定理,当且仅当时取等号由(Ⅰ)得,,,故角的取值范围是【点睛】本题考查了等差中项的概念,考查了正弦定理、余弦定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论