湖南省株洲市茶陵二中2022-2023学年高二数学第二学期期末学业质量监测模拟试题含解析_第1页
湖南省株洲市茶陵二中2022-2023学年高二数学第二学期期末学业质量监测模拟试题含解析_第2页
湖南省株洲市茶陵二中2022-2023学年高二数学第二学期期末学业质量监测模拟试题含解析_第3页
湖南省株洲市茶陵二中2022-2023学年高二数学第二学期期末学业质量监测模拟试题含解析_第4页
湖南省株洲市茶陵二中2022-2023学年高二数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(,e是自然对数的底数,)存在唯一的零点,则实数a的取值范围为()A. B. C. D.2.已知函数,若函数的图象与轴的交点个数不少于2个,则实数的取值范围是()A. B.C. D.3.在一段线路中并联着两个独立自动控制的开关,只要其中一个开关能够闭合,线路就可以正常工作.设这两个开关能够闭合的概率分别为0.5和0.7,则线路能够正常工作的概率是()A.0.35 B.0.65 C.0.85 D.4.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:有心脏病无心脏病秃发20300不秃发5450根据表中数据得,由断定秃发与患有心脏病有关,那么这种判断出错的可能性为()附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.0.1 B.0.05C.0.01 D.0.0015.函数的零点个数是()A.0 B.1 C.2 D.36.设为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.,则B.,则C.,则D.,则7.定义函数为不大于的最大整数,对于函数有以下四个命题:①;②在每一个区间,上,都是增函数;③;④的定义域是,值域是.其中真命题的序号是()A.③④ B.①③④ C.②③④ D.①②④8.设p:f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增;q:m≥43A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.以双曲线的焦点为顶点,离心率为的双曲线的渐近线方程是()A. B.C. D.10.已知曲线,给出下列命题:①曲线关于轴对称;②曲线关于轴对称;③曲线关于原点对称;④曲线关于直线对称;⑤曲线关于直线对称,其中正确命题的个数是()A.1 B.2 C.3 D.411.已知双曲线,若其过一、三象限的渐近线的倾斜角,则双曲线的离心率的取值范围是()A. B. C. D.12.函数的定义域为R,,对任意的,都有成立,则不等式的解集为A. B. C. D.R二、填空题:本题共4小题,每小题5分,共20分。13.若复数为纯虚数,则实数=______.14.命题“”为假命题,则实数的取值范围是.15.若的展开式中含项的系数为,则__________.16.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a.现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子,若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4分.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量表示该游戏者所得分数.(1)求该游戏者有机会抛掷第3次骰子的概率;(2)求随机变量的分布列和数学期望.18.(12分)已知函数.(1)若函数上是减函数,求实数a的最小值;(2)若,使()成立,求实数a的取值范围.19.(12分)已知向量m=(3sin(1)若m⋅n=1(2)记f(x)=m⋅n在ΔABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)20.(12分)已知函数(e为自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.21.(12分)已知函数在处取得极大值为9.(1)求,的值;(2)求函数在区间上的最值.22.(10分)已知椭圆的离心率为,,分别为椭圆的左、右焦点,点在椭圆上.(1)求的方程;(2)若直线与椭圆相交于,两点,试问:在轴上是否在点,当变化时,总有?若存在求出点的坐标,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

函数,是自然对数的底数,存在唯一的零点等价于函数与函数只有唯一一个交点,由,,可得函数与函数唯一交点为,的单调,根据单调性得到与的大致图象,从图形上可得要使函数与函数只有唯一一个交点,则,即可解得实数的取值范围.【详解】解:函数,是自然对数的底数,存在唯一的零点等价于:函数与函数只有唯一一个交点,,,函数与函数唯一交点为,又,且,,在上恒小于零,即在上为单调递减函数,又是最小正周期为2,最大值为的正弦函数,可得函数与函数的大致图象如图:要使函数与函数只有唯一一个交点,则,,,,解得,又,实数的范围为.故选:.【点睛】本题主要考查了零点问题,以及函数单调性,解题的关键是把唯一零点转化为两个函数的交点问题,通过图象进行分析研究,属于难题.2、C【解析】分析:根据的图象与轴的交点个数不少于2个,可得函数的图象与的交点个数不少于2个,在同一坐标系中画出两个函数图象,结合图象即可得到m的取值范围.详解:的图象与轴的交点个数不少于2个,函数的图象与函数的图象的交点个数不少于2个,函数,时,函数为指数函数,过点,时,函数,为对称轴,开口向下的二次函数.,为过定点的一条直线.在同一坐标系中,画出两函数图象,如图所示.(1)当时,①当过点时,两函数图象有两个交点,将点代入直线方程,解得.②当与相切时,两函数图象有两个交点.联立,整理得则,解得,(舍)如图当,两函数图象的交点个数不少于2个.(2)当时,易得直线与函数必有一个交点如图当直线与相切时有另一个交点设切点为,,切线的斜率,切线方程为切线与直线重合,即点在切线上.,解得由图可知,当,两函数图象的交点个数不少于2个.综上,实数的取值范围是故选C.点睛:本题考查函数零点问题,考查数形结合思想、转化思想及分类讨论的思想,具有一定的难度.利用函数零点的情况,求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解(2)分离参数后转化为函数的值域(最值)问题求解(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.3、C【解析】试题分析:线路能够了正常工作的概率=,故选C.考点:独立事件,事件的关系与概率.4、D【解析】

根据观测值K2,对照临界值得出结论.【详解】由题意,,根据附表可得判断秃发与患有心脏病有关出错的可能性为.故选D.【点睛】本题考查了独立性检验的应用问题,理解临界值表格是关键,是基础题.5、B【解析】

因为和在均为增函数,所以在单调递增,所以函数至多一个零点,再给赋值,根据可得函数在上有一个零点【详解】因为与均在上为增函数,所以函数至多一个零点又,,,即函数在上有一个零点答案选B【点睛】零点问题可根据零点存在定理进行判断,也可采用构造函数法,根据构造的两新函数函数交点个数来确定零点个数6、A【解析】

依据空间中点、线、面的位置逐个判断即可.【详解】直线所在的方向向量分别记为,则它们分别为的法向量,因,故,从而有,A正确.B、C中可能平行,故B、C错,D中平行、异面、相交都有可能,故D错.综上,选A.【点睛】本题考查空间中与点、线、面位置关系有关的命题的真假判断,属于基础题.7、D【解析】

画出函数的图象,根据图象可知函数的周期性、单调性、定义域与值域,从而可判断各命题的真假.【详解】画出的图象,如图所示,可知是最小正周期为1的函数,当时,,可得,①正确;由图可知,在每一个区间,上,都是增函数,②正确;由图可知,的定义域是,值域是,④正确;由图可知,,③是错误的.真命题的序号是①②④,故选D.【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的周期性、函数的定义域与值域,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.8、C【解析】试题分析:由f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增,得f'(x)=3x2+4x+m≥0在R上恒成立,只需Δ=16-12m≤0,即m≥考点:1、充分条件与必要条件;2、利用导数研究函数的单调性.9、D【解析】

由题求已知双曲线的焦点坐标,进而求出值即可得答案。【详解】由题可知双曲线的焦点坐标为,则所求双曲线的顶点坐标为,即,又因为离心率为,所以,解得,所以,即,所以渐近线方程是故选D【点睛】本题考查求双曲线的渐近线方程,解题的关键是判断出焦点位置后求得,属于简单题。10、C【解析】

根据定义或取特殊值对曲线的对称性进行验证,可得出题中正确命题的个数.【详解】在曲线上任取一点,该点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题①正确;点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题②正确;点关于原点的对称点的坐标为,且,则曲线关于原点对称,命题③正确;在曲线上取点,该点关于直线的对称点坐标为,由于,则曲线不关于直线对称,命题④错误;在曲线上取点,该点关于直线的对称点的坐标为,由于,则曲线不关于直线对称,命题⑤错误.综上所述,正确命题的个数为.故选:C.【点睛】本题考查曲线对称性的判定,一般利用对称性的定义以及特殊值法进行判断,考查推理能力,属于中等题.11、B【解析】分析:利用过一、三象限的渐近线的倾斜角θ∈[,],可得1≤≤,即可求出双曲线的离心率e的取值范围.详解:双曲线=1(a>0,b>0)的一条渐近线方程为y=x,由过一、三象限的渐近线的倾斜角θ∈[,],∴tan≤≤tan,∴1≤≤,∴1≤≤3,∴2≤1+≤4,即2≤e2≤4,解得≤e≤2,故选:B.点睛:求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解.12、A【解析】

把原不等式化为右侧为0的形式,令左侧为,利用导数得到的单调性,得解集.【详解】原不等式化为,令,则,对任意的,都有成立,恒成立,在R上递减,,的解集为,故选:A.【点睛】此题考查了利用导数研究单调性,解决不等式问题,难度适中.对于没有解析式或者表达式比较复杂的不等式,通常采取的方法是,研究函数的单调性和零点,进而得到解集。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:纯虚数的表现形式是中,且,根据这个条件,列出关于的方程组,从而可得结果.详解:复数为纯虚数,且,,故答案为.点睛:本题主要考查纯虚数的定义,意在考查对基本概念掌握的熟练程度,属于简单题.14、【解析】试题分析:由题意可得命题:,为真命题.所以,解得.考点:命题的真假.15、2.【解析】分析:首先利用二项展开式的通项,求得该二项展开式的通项,之后令幂指数等于5,求得r的值,再回代,令其等于80,求得参数的值.详解:展开式的通项为,令,解得,所以有,解得,故答案是2.点睛:该题考查的是有关根据二项展开式的特定项,确定其参数的值的问题,需要熟练掌握二项展开式的通项,之后令幂指数等于相应的数,求得结果即可.16、【解析】

设正方形边长为,可得出每个直角三角形的面积为,由几何概型可得出四个直角三角形的面积之和为,可求出,由得出并得出的值,再利用降幂公式可求出的值.【详解】设正方形边长为,则直角三角形的两条直角边分别为和,则每个直角三角形的面积为,由题意知,阴影部分正方形的面积为,所以,四个直角三角形的面积和为,即,由于是较小的锐角,则,,所以,,因此,,故答案为.【点睛】本题考查余弦值的计算,考查几何概型概率的应用,解题的关键就是求出和的值,并通过二倍角升幂公式求出的值,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】分析:⑴该游戏者抛掷骰子成功的概率分别为、、,该游戏者有机会抛掷第3次骰子为事件.则;(2)由题意可知,的可能取值为、、、、,分别求出,,,,得到的分布列及数学期望.详解:⑴该游戏者抛掷骰子成功的概率分别为、、,该游戏者有机会抛掷第3次骰子为事件.则;答:该游戏者有机会抛掷第3次骰子的概率为(2)由题意可知,的可能取值为、、、、,,,,,,所以的分布列为所以的数学期望点睛:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.18、(1);(2).【解析】

由已知函数的定义域均为,且.(1)函数,因f(x)在上为减函数,故在上恒成立.所以当时,.又,故当,即时,.所以于是,故a的最小值为.(2)命题“若使成立”等价于“当时,有”.由(1),当时,,.问题等价于:“当时,有”.当时,由(1),在上为减函数,则=,故.当时,由于在上为增函数,故的值域为,即.由的单调性和值域知,唯一,使,且满足:当时,,为减函数;当时,,为增函数;所以,=,.所以,,与矛盾,不合题意.综上,得.考点:1.导数公式;2.函数的单调性;3.恒成立问题;4.函数的最值以及命题的等价变换.19、(1)-(2)(1,【解析】试题分析:(1)∵m·n=1,即3sinx4cosx4+cos2即32sinx2+12cosx∴sin(x2+π6)=∴cos(2π3-x)=cos(x-π3)=-cos(x+π3)=-[1-2sin2(=2·(12)2-1=-1(2)∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC.∴2sinAcosB-cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴cosB=12,B=π3,∴0<A<∴π6<A2+π6<π212又∵f(x)=m·n=sin(x2+π6)+∴f(A)=sin(x4+π6)+故函数f(A)的取值范围是(1,32考点:本题综合考查了向量、三角函数及正余弦定理点评:三角与向量是近几年高考的热门题型,这类题往往是先进行向量运算,再进行三角变换20、(1)函数的单调递增区间是;单调递减区间是(2).【解析】试题分析:(1),根据题意,由于函数当t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论