版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.一阶微分方程2.可降阶的二阶微分方程3.二阶线性微分方程的解的结构4.二阶常系数线性微分方程一、第七章要点1.一阶微分方程一、第七章要点11.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性微分方程类型解法1.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性23)齐次方程此为变量可分离的微分方程.类型解法令,则.原方程变为3)齐次方程此为变量可分离的微分方程.类型解法令34)伯努利方程为一阶线性微分方程.类型解法令,则原方程变为4)伯努利方程为一阶线性微分方程.类型解法令42.可降阶的二阶微分方程方法作次积分.新方程是一个一阶微分方程.1)类型2)类型方法令,则原方程转变为2.可降阶的二阶微分方程方法作次积分.新方程5新方程是一个一阶微分方程.3)类型方法令,则原方程转变为新方程是一个一阶微分方程.3)类型方法令63.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方程⑴所对应的齐次线性方程.有⑴⑵1)若是方程⑵的线性无关解,则方程⑵有通解3.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方7的一个特解.2)若是方程⑴的特解,则方程⑴有通解3)若是方程的特解,则为方程的一个特解.2)若是方程⑴的特解,则方程⑴有通解384.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方程相应的特征方程为则:①若方程有两个不同的实根,则方程的通解为4.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方9②若方程有两个相同的实根,则方程的通解为③若方程有一对共轭复根,则方程的通解为②若方程有两个相同的实根,则方程的通102)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中是一个与同次的多项式,而若不是特征方程的根,若是特征方程的单根,若是特征方程的二重根.2)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中11②设方程则方程有特解其中是次的多项式,,而
按是否为特征方程的根而分别取1或0.②设方程则方程有特解其中12二、例题选讲解此方程为一个可分离变量的微分方程.分离变量,因得例1求解方程.二、例题选讲解此方程为一个可分离变量的微分方程13两边积分,得即得原方程的通解两边积分,得即得原方程的通解14解原方程变形后为齐次方程例2求解方程,.作变换,则有解原方程变形后为齐次方程例2求解方程15移项,得两边积分,得将代入,有移项,得两边积分,得将代入,有16即满足初始条件的解为由初始条件,得,即原方程的解为即满足初始条件的解为由初始条件17解原方程变形为即例3求微分方程的通解.此是关于函数的一阶线性非齐次线性微分方程,由求解公式得解原方程变形为即例3求微分方程18微分方程复习要点ppt课件19分离变量,得两边积分,得例4求解微分方程.解法1此方程为齐次方程,作代换,则有分离变量,得两边积分,得例4求解微分方程20故方程的通解为即由于故方程的通解为即由于21解法2方程变形为故方程的通解为代回原变量,得此方程为贝努利方程,此时令,则有解法2方程变形为故方程的通解为代回原变量,得此方程为贝22例5求解下列方程即方程的解为1.;2..解1.此方程不含变量,故令变换,则方程为例5求解下列方程即方程的解为1.23即所以,方程的通解为即所以,方程的通解为24方程变形为即有2.此方程中不含变量,作变换,则方程变形为即有2.此方程中不含变量,作变换25解得即分离变量后,再两边积分得从而得方程的通解由,得方程的解为.由解得即分离变量后,再两边积分得从而得方程的通解由26例6求下列方程的通解解1.特征方程为解得,由此得到方程的通解1.;2.;3..例6求下列方程的通解解1.特征方程为解得27则2.特征方程为,因而齐次方程的通解为由于为单根,故可设方程的特解为则2.特征方程为28代入方程后,比较系数得所以因而方程的通解为代入方程后,比较系数得所以因而方程的通解为29代入到原方程,得3.特征方程为,解得,所以齐次方程的通解为注意到不是特征方程的根,故方程的特解可设为代入到原方程,得3.特征方程为301.一阶微分方程2.可降阶的二阶微分方程3.二阶线性微分方程的解的结构4.二阶常系数线性微分方程一、第七章要点1.一阶微分方程一、第七章要点311.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性微分方程类型解法1.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性323)齐次方程此为变量可分离的微分方程.类型解法令,则.原方程变为3)齐次方程此为变量可分离的微分方程.类型解法令334)伯努利方程为一阶线性微分方程.类型解法令,则原方程变为4)伯努利方程为一阶线性微分方程.类型解法令342.可降阶的二阶微分方程方法作次积分.新方程是一个一阶微分方程.1)类型2)类型方法令,则原方程转变为2.可降阶的二阶微分方程方法作次积分.新方程35新方程是一个一阶微分方程.3)类型方法令,则原方程转变为新方程是一个一阶微分方程.3)类型方法令363.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方程⑴所对应的齐次线性方程.有⑴⑵1)若是方程⑵的线性无关解,则方程⑵有通解3.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方37的一个特解.2)若是方程⑴的特解,则方程⑴有通解3)若是方程的特解,则为方程的一个特解.2)若是方程⑴的特解,则方程⑴有通解3384.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方程相应的特征方程为则:①若方程有两个不同的实根,则方程的通解为4.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方39②若方程有两个相同的实根,则方程的通解为③若方程有一对共轭复根,则方程的通解为②若方程有两个相同的实根,则方程的通402)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中是一个与同次的多项式,而若不是特征方程的根,若是特征方程的单根,若是特征方程的二重根.2)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中41②设方程则方程有特解其中是次的多项式,,而
按是否为特征方程的根而分别取1或0.②设方程则方程有特解其中42二、例题选讲解此方程为一个可分离变量的微分方程.分离变量,因得例1求解方程.二、例题选讲解此方程为一个可分离变量的微分方程43两边积分,得即得原方程的通解两边积分,得即得原方程的通解44解原方程变形后为齐次方程例2求解方程,.作变换,则有解原方程变形后为齐次方程例2求解方程45移项,得两边积分,得将代入,有移项,得两边积分,得将代入,有46即满足初始条件的解为由初始条件,得,即原方程的解为即满足初始条件的解为由初始条件47解原方程变形为即例3求微分方程的通解.此是关于函数的一阶线性非齐次线性微分方程,由求解公式得解原方程变形为即例3求微分方程48微分方程复习要点ppt课件49分离变量,得两边积分,得例4求解微分方程.解法1此方程为齐次方程,作代换,则有分离变量,得两边积分,得例4求解微分方程50故方程的通解为即由于故方程的通解为即由于51解法2方程变形为故方程的通解为代回原变量,得此方程为贝努利方程,此时令,则有解法2方程变形为故方程的通解为代回原变量,得此方程为贝52例5求解下列方程即方程的解为1.;2..解1.此方程不含变量,故令变换,则方程为例5求解下列方程即方程的解为1.53即所以,方程的通解为即所以,方程的通解为54方程变形为即有2.此方程中不含变量,作变换,则方程变形为即有2.此方程中不含变量,作变换
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货币资金报表范例
- Windows Server网络管理项目教程(Windows Server 2022)(微课版)10.3 任务2 DNS中继代理
- 大型机械设备管理制度与安全操作规程(修改版1)
- 煤化工艺学煤低温干馏
- 幼儿园安全教育教案18篇
- 小学安全教育主题班会教案
- 高三烃含氧衍生物归纳
- 全省小学数学教师赛课一等奖数学一年级上册(人教2024年新编)《10的认识 》课件
- 生命在你手中主题班会
- 病历书写规范
- 生涯规划教育实践研究
- 2021年三中全会知识竞赛题库
- 防欺凌家长会
- 教师职业生涯发展报告
- 2024年时事新闻及点评【六篇】
- 酒店竞争对手分析报告
- 《工伤预防知识教育》课件
- 青岛版二年级上册数学《认识方向》单元整体备课设计
- 国际航空运费计算
- 蛔虫病学习课件
- 期末教师总结大会活动方案
评论
0/150
提交评论