版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.一阶微分方程2.可降阶的二阶微分方程3.二阶线性微分方程的解的结构4.二阶常系数线性微分方程一、第七章要点1.一阶微分方程一、第七章要点11.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性微分方程类型解法1.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性23)齐次方程此为变量可分离的微分方程.类型解法令,则.原方程变为3)齐次方程此为变量可分离的微分方程.类型解法令34)伯努利方程为一阶线性微分方程.类型解法令,则原方程变为4)伯努利方程为一阶线性微分方程.类型解法令42.可降阶的二阶微分方程方法作次积分.新方程是一个一阶微分方程.1)类型2)类型方法令,则原方程转变为2.可降阶的二阶微分方程方法作次积分.新方程5新方程是一个一阶微分方程.3)类型方法令,则原方程转变为新方程是一个一阶微分方程.3)类型方法令63.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方程⑴所对应的齐次线性方程.有⑴⑵1)若是方程⑵的线性无关解,则方程⑵有通解3.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方7的一个特解.2)若是方程⑴的特解,则方程⑴有通解3)若是方程的特解,则为方程的一个特解.2)若是方程⑴的特解,则方程⑴有通解384.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方程相应的特征方程为则:①若方程有两个不同的实根,则方程的通解为4.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方9②若方程有两个相同的实根,则方程的通解为③若方程有一对共轭复根,则方程的通解为②若方程有两个相同的实根,则方程的通102)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中是一个与同次的多项式,而若不是特征方程的根,若是特征方程的单根,若是特征方程的二重根.2)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中11②设方程则方程有特解其中是次的多项式,,而
按是否为特征方程的根而分别取1或0.②设方程则方程有特解其中12二、例题选讲解此方程为一个可分离变量的微分方程.分离变量,因得例1求解方程.二、例题选讲解此方程为一个可分离变量的微分方程13两边积分,得即得原方程的通解两边积分,得即得原方程的通解14解原方程变形后为齐次方程例2求解方程,.作变换,则有解原方程变形后为齐次方程例2求解方程15移项,得两边积分,得将代入,有移项,得两边积分,得将代入,有16即满足初始条件的解为由初始条件,得,即原方程的解为即满足初始条件的解为由初始条件17解原方程变形为即例3求微分方程的通解.此是关于函数的一阶线性非齐次线性微分方程,由求解公式得解原方程变形为即例3求微分方程18微分方程复习要点ppt课件19分离变量,得两边积分,得例4求解微分方程.解法1此方程为齐次方程,作代换,则有分离变量,得两边积分,得例4求解微分方程20故方程的通解为即由于故方程的通解为即由于21解法2方程变形为故方程的通解为代回原变量,得此方程为贝努利方程,此时令,则有解法2方程变形为故方程的通解为代回原变量,得此方程为贝22例5求解下列方程即方程的解为1.;2..解1.此方程不含变量,故令变换,则方程为例5求解下列方程即方程的解为1.23即所以,方程的通解为即所以,方程的通解为24方程变形为即有2.此方程中不含变量,作变换,则方程变形为即有2.此方程中不含变量,作变换25解得即分离变量后,再两边积分得从而得方程的通解由,得方程的解为.由解得即分离变量后,再两边积分得从而得方程的通解由26例6求下列方程的通解解1.特征方程为解得,由此得到方程的通解1.;2.;3..例6求下列方程的通解解1.特征方程为解得27则2.特征方程为,因而齐次方程的通解为由于为单根,故可设方程的特解为则2.特征方程为28代入方程后,比较系数得所以因而方程的通解为代入方程后,比较系数得所以因而方程的通解为29代入到原方程,得3.特征方程为,解得,所以齐次方程的通解为注意到不是特征方程的根,故方程的特解可设为代入到原方程,得3.特征方程为301.一阶微分方程2.可降阶的二阶微分方程3.二阶线性微分方程的解的结构4.二阶常系数线性微分方程一、第七章要点1.一阶微分方程一、第七章要点311.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性微分方程类型解法1.一阶微分方程1)可分离变量的微分方程解法类型2)一阶线性323)齐次方程此为变量可分离的微分方程.类型解法令,则.原方程变为3)齐次方程此为变量可分离的微分方程.类型解法令334)伯努利方程为一阶线性微分方程.类型解法令,则原方程变为4)伯努利方程为一阶线性微分方程.类型解法令342.可降阶的二阶微分方程方法作次积分.新方程是一个一阶微分方程.1)类型2)类型方法令,则原方程转变为2.可降阶的二阶微分方程方法作次积分.新方程35新方程是一个一阶微分方程.3)类型方法令,则原方程转变为新方程是一个一阶微分方程.3)类型方法令363.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方程⑴所对应的齐次线性方程.有⑴⑵1)若是方程⑵的线性无关解,则方程⑵有通解3.二阶线性微分方程的解的结构设二阶线性微分方程而称方程为方37的一个特解.2)若是方程⑴的特解,则方程⑴有通解3)若是方程的特解,则为方程的一个特解.2)若是方程⑴的特解,则方程⑴有通解3384.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方程相应的特征方程为则:①若方程有两个不同的实根,则方程的通解为4.二阶常系数线性微分方程1)二阶常系齐次数线性微分方程设方39②若方程有两个相同的实根,则方程的通解为③若方程有一对共轭复根,则方程的通解为②若方程有两个相同的实根,则方程的通402)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中是一个与同次的多项式,而若不是特征方程的根,若是特征方程的单根,若是特征方程的二重根.2)二阶常系数非齐次线性微分方程①设方程为则方程有特解其中41②设方程则方程有特解其中是次的多项式,,而
按是否为特征方程的根而分别取1或0.②设方程则方程有特解其中42二、例题选讲解此方程为一个可分离变量的微分方程.分离变量,因得例1求解方程.二、例题选讲解此方程为一个可分离变量的微分方程43两边积分,得即得原方程的通解两边积分,得即得原方程的通解44解原方程变形后为齐次方程例2求解方程,.作变换,则有解原方程变形后为齐次方程例2求解方程45移项,得两边积分,得将代入,有移项,得两边积分,得将代入,有46即满足初始条件的解为由初始条件,得,即原方程的解为即满足初始条件的解为由初始条件47解原方程变形为即例3求微分方程的通解.此是关于函数的一阶线性非齐次线性微分方程,由求解公式得解原方程变形为即例3求微分方程48微分方程复习要点ppt课件49分离变量,得两边积分,得例4求解微分方程.解法1此方程为齐次方程,作代换,则有分离变量,得两边积分,得例4求解微分方程50故方程的通解为即由于故方程的通解为即由于51解法2方程变形为故方程的通解为代回原变量,得此方程为贝努利方程,此时令,则有解法2方程变形为故方程的通解为代回原变量,得此方程为贝52例5求解下列方程即方程的解为1.;2..解1.此方程不含变量,故令变换,则方程为例5求解下列方程即方程的解为1.53即所以,方程的通解为即所以,方程的通解为54方程变形为即有2.此方程中不含变量,作变换,则方程变形为即有2.此方程中不含变量,作变换
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南医科大学附属医院2026年度第一轮人才招聘备考题库有完整答案详解
- 初中生物细胞膜通道蛋白3D打印结构分析课题报告教学研究课题报告
- 2026年北海市中医医院医疗备考题库科工作人员招聘备考题库及完整答案详解
- 山东高速集团有限公司2025年下半年校园招聘(管培生和战略产业人才招聘)备考题库完整答案详解
- 安徽港航能源储运有限公司2025年第二批次劳务派遣员工社会招聘备考题库有答案详解
- 2026年福建省农业科学院植物保护研究所公开招聘科研助理的备考题库及一套参考答案详解
- 2025年区块链跨境电商供应链溯源存证挑战报告
- 2025年法律咨询平台五年国际化发展报告
- 小学科学教育中智能设备互联互通对教学效果的影响分析教学研究课题报告
- 2023-2024学年高二上学期地理期末模拟卷
- TSG特种设备安全技术规范TSGD-202工业管道安全技术规程
- 利用EXCEL画风机特性曲线-模版
- 人体工效评估程序
- EPC工程总承包项目设计及施工的配合制度
- 西南大学PPT 04 实用版答辩模板
- 国家开放大学电大《政治学原理》形考任务1及4网考题库答案
- 管理百年智慧树知到答案章节测试2023年
- 国家开放大学《刑法学(1)》形成性考核作业1-4参考答案
- 工艺美术专业课程配套练习二
- 2022“博学杯”全国幼儿识字与阅读大赛选拔试卷
- 临床试验监查计划
评论
0/150
提交评论