


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复杂介质多波地震正演模拟的动力学射线追踪法
1地震射线追踪辐射法是一种与光的性质和行为研究密切相关的几何地震方法,在地震学的发展过程中发挥着很好的作用。早在19世纪末,一些学者在地震学研究中,就开始用射线法计算各种球向对称结构介质中的地震波理论走时,以便将计算结果同观测资料进行比较,从而根据地震波的走时曲线研究地球的内部结构。经过一个多世纪的发展,射线追踪法目前已成为许多地球物理问题研究的基础,在诸如地震记录正演模拟、地震叠前偏移和地震层析成像等地球物理正、反演工作中皆得到广泛应用,并发挥着极其重要的作用。特别是在地震叠前偏移处理中,射线追踪法仍是目前计算速度最快和最有效的正演方法。目前,动力学射线追踪在射线法中起着重要作用,为此,许多与此相关的方法得到了发展,而动力学射线追踪最重要的应用莫过于旁轴射线近似和高斯射线束的计算2zeopprits方程的基本原理弹性波在传播过程中若遇到弹性突变的地层分界面,就象光在非均匀介质中传播的情形一样,能量在分界面上会重新分配,并产生反射和透射。而且,在反射和透射波中,还会出现不同于入射波类型的波,称之为转换波。图1展示了纵波入射于各向同性介质1与介质2构成的地层分界面上的情况,其中,除了产生反射纵波和透射纵波这两种同类波(P波)之外,还会产生反射横波和透射横波这两种转换波(P-SV波)。为计算反射波和透射波的振幅值,可如图1选取坐标轴,Z轴垂直向下,XOY平面与分界面重合。假定所研究的弹性波为平面谐波,并假设纵波位移沿射线传播方向为正,横波位移在射线传播方向的右侧为正(见图1射线上黑点处的箭头方向),那么,根据分界面上应力和位移连续的边界条件,即可推出计算反射纵波、透射纵波、反射横波和透射横波位移振幅系数的Zoeppritz方程为式中:A、B、C、D分别为反射P波、反射P-SV波、透射P波、透射P-SV波的位移振幅系数,亦即各波分量振幅与入射波振幅的比值;θ入射角和各波反射角及透射角的正弦与波传播速度之间的关系则由斯奈尔定律确定。同样,当在垂直平面内偏振的横波入射到由两种介质构成的弹性分界面时,除了产生反射横波和透射横波这两种同类波(SV波)之外,还会产生反射纵波和透射纵波这两种转换波(SV-P波),如图2所示。采取同上一样的处理措施,可推得SV波入射时反射横波、透射横波、反射纵波和透射纵波位移振幅系数的计算公式为式中:E、F、G、H分别为反射SV-P波、反射SV波、透射SV-P波、透射SV波的位移振幅系数;φ根据(1)和(2)式,即可计算波在各向同性介质中传播、并以任意角度入射到弹性分界面上时的反射波和透射波能量的分配情况。不过,当入射角大于临界角时,反射波的性质会发生变化,这样就不能直接应用(1)、(2)式计算各反射波的振幅系数。在多波地震勘探中,由于反射转换波是以纵波速度下行传播,而以横波速度上行传播,因此,在多波正演动力学射线追踪过程中,可只考虑纵波超临界角入射情况。当纵波超临界角入射于分界面上时,根据斯奈尔定律可知cosθ3界面编码的基础在应用斯奈尔定律进行射线追踪时,为了使射线能按正确的传播路径传播,就必须根据实际介质结构对界面进行正确的编码,即将各界面进行合理的排序,否则就会导致某些错误的追踪结果。因此,正确的界面编码是应用斯奈尔定律进行射线追踪的基础,也是保证获得正确追踪结果的前提。图3为一结构比较简单的层状介质模型,对这样的结构,其界面编码不会存在困难,因为射线在旅行过程中所穿过的介质层序下行时依次递增,而上行时则依次递减,因此只要按常规方法从浅至深依次递增排列介质层序即可,图中R此外,对于回转型和存在逆断层的界面,在界面编码中应把单一的物理界面划分成若干个序号递增、界面相连的局部界面(图7、8)。图7a为一回转型界面,图中G点能接收来自界面AB段和BC段两部分的反射波,为使射线追踪能处理这样的情况,就必须将一种介质人为地分成性质相同的两种介质,如图7b所示,将界面段AB编码为R在射线追踪界面编码处理中,只要根据本文阐述的编码原则,运用上述几个具有代表性的模型界面编码规则,就可以处理复杂的介质结构。4连续介质介质层的简化一般情况下,实际地下介质常可近似成均匀的层状介质,每层介质的速度都可看成在垂向或横向上是不变的。然而,在沉积旋回比较明显的地区,垂向上常由许多层速度渐变的薄层组成,另外,不少地区由于沉积物在横向上逐渐变化,导致介质层速度出现横向渐变。因此,有时把一些实际介质视为连续介质将可能更具有实际意义。那么,在射线追踪中,对于垂向速度连续变化的介质层,可以将其简化为若干个等厚的、速度均一的水平层进行追踪(图9a);而对于横向速度连续变化的介质层,则可以将其简化为若干等宽的、速度均一的垂直层进行追踪(图9b)。图9中的ΔZ、ΔX为简化的均匀薄层的厚度,V5地震正演记录的一般资料根据上述内容及原则,编制了相应的二维各向同性弹性多波射线追踪正演程序。在追踪过程中,通过试射法调整射线的初始出射方向。这里介绍该程序对几个理论模型的正演模拟结果,并在正演模拟中对所有模型只追踪P波和P-SV波。模型1为4层水平介质模型(图10),各层速度如图所示,各层介质密度均假定为1(下同)。在正演中,炮点位于x=100m处,最小偏移距为100m,接收道数为96道,道间距为50m。图11为该模型共炮点射线正演模拟记录。从图中可以看到,P-SV波有相位反转现象,其能量在相位反转后逐渐变强;P波和P-SV波既存在于X分量记录中,也存在于Z分量记录中,这说明在多波多分量地震处理中,做好波场分离是很有意义的。模型2仍为层状介质模型,是模型1的一种变型(图12),各层速度值同上,只是各界面略有倾斜。在正演中,炮点位于中点x=2500m处,取中点激发方式,最小偏移距为25m,接收道数仍为96道,道间距为50m。图13为该模型共炮点射线正演模拟记录,可以看到,在炮点附近几乎接收不到P-SV波,但对第一层反射P-SV波来说却不那么明显,而这种规律与实际记录是吻合的;另一个明显的特征是在X分量记录上,P波和P-SV波都是反相的。因此,在实际处理中,须将X分量的负偏移距记录进行极性反转。模型3为具有连续介质层介质模型(图14),其中第一层的速度呈横向线性变化,其左端P波速度为1500m/s,右端P波速度为2500m/s;其它各层P波速度如图所示,各层横、纵波速度比皆取0.57。在正演时,取中点激发方式,激发点位于x=2500m处,最小偏移距为25m,接收道数仍为96道,道间距为50m。此外,为了便于观察射线追踪程序处理横向速度变化的效果,这里适当放大了间距,将连续介质层划分成多个ΔX=100m等宽的垂直均匀介质层。图15为该模型共炮点射线正演模拟记录,将其同图13相比,可以清楚看到,横向速度变化所引起的P波和P-SV波同相轴的变化,因此,若减少间距ΔX的值,必将减弱不连续现象。模型4为一复杂介质模型(图16),各层速度如图所示。在正演时,激发点位于x=100m处,最小偏移距为100m,接收道数为180道,道间距为25m。图17为该模型共炮点射线正演模拟记录,可以看到,除了第一层的反射波能量外,在Z分量上接收到的主要还是P波,在X分量上接收到的主要还是P-SV波;而且在两个分量上都没有看到来自R从上述几个模型的正演结果可以清楚地看到,本文阐述的动力学射线追踪方法不仅能适应各种地质构造情况,而且还能获得反映波动力学特性的追踪结果。6多波射线正演的应用由于本文针对复杂地质结构这个制约斯奈尔定律应用于射线追踪的瓶颈,提出了一种行之有效的界面编码方案,从而使斯奈尔定律和Zoeppritz方程相结合的多波射线正演方法,在适用于复杂地质构造的同时,还能完
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- N-N-Dimethylethylenediamine-d4-生命科学试剂-MCE
- Erythromycin-oxime-Erythromycin-A-oxime-生命科学试剂-MCE
- Artocarpesin-生命科学试剂-MCE
- Abacavir-carboxylate-生命科学试剂-MCE
- 7-Chlorothieno-2-3-c-pyridine-生命科学试剂-MCE
- 合同范本乙方攥写范本
- 车入公司合同范本
- 印刷耗材合同范本
- 财务培训服务协议书(2篇)
- 教师贫困报告范文
- 第2课《让美德照亮幸福人生》第2框《做守家庭美德的好成员》-【中职专用】《职业道德与法治》同步课堂课件
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 2024届广东省深圳市中考物理模拟试卷(一模)(附答案)
- 前庭功能锻炼科普知识讲座
- 供应链战略布局与区域拓展案例
- 上海话培训课件
- 注塑车间绩效考核方案
- 初中英语阅读理解专项练习26篇(含答案)
- 诵读经典传承文明课件
- 高中数学选择性必修3 教材习题答案
- 北师大版二年级下册数学第一单元 除法教案
评论
0/150
提交评论