版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省南充市阆中柏垭中学2021-2022学年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.化简的结果是(
)A.2π﹣9 B.9﹣2π C.﹣1 D.1参考答案:C【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;函数的性质及应用.【分析】根据根式的运算性质,可得答案.【解答】解:=|π﹣4|+π﹣5=4﹣π+π﹣5=﹣1,故选:C【点评】本题考查的知识点是根式的化简和计算,熟练掌握,是解答的关键.2.当时,函数的(
)A.最大值是1,最小值是-1 B.最大值是1,最小值是C.最大值是2,最小值是-2 D.最大值是2,最小值是-1参考答案:D【分析】将函数变形为,根据自变量的范围求出括号内角的范围,根据正弦曲线得到函数的值域.【详解】当时,当时,即故选D【点睛】本题主要考查了辅助角公式以及正弦函数的最值,属于基础题.3.已知全集U={小于10的正整数},集合M={3,4,5},P={1,3,6,9},则集合{2,7,8}=
(
)(A)
(B)
(C)
(D)参考答案:B略4.函数的图象是下列图象中的(
)
参考答案:A5.下列函数在区间上是增函数的是(
)A.
B.
C.
D.参考答案:B6.变量满足约束条件,则目标函数的取值范围是(
)A.
B.
C.
D.参考答案:A7.已知0<<1,<-1,则函数的图象必定不经过(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:A8.设函数,则的表达式是(
)A.
B.
C.
D.参考答案:B9.函数y=ax在[0,1]上的最大值与最小值的和为3,则函数y=3ax﹣1在[0,1]的最大值是()A.6 B.1 C.5 D.参考答案:C【考点】4B:指数函数的单调性与特殊点.【分析】本题要分两种情况进行讨论:①0<a<1,函数y=ax在[0,1]上为单调减函数,根据函数y=ax在[0,1]上的最大值与最小值和为3,求出a②a>1,函数y=ax在[0,1]上为单调增函数,根据函数y=ax在[0,1]上的最大值与最小值和为3,求出a,最后代入函数y=3ax﹣1,即可求出函数y=3ax﹣1在[0,1]上的最大值.【解答】解:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2∴函数y=3ax﹣1=6x﹣1在[0,1]上的最大值是5故选C10.阅读程序框图(如图),执行相应的程序,输出的结果是()A.50B.55C.1023D.2565参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知等比数列{an}满足,则________.参考答案:【分析】由等比数列的下标性质先求再求.【详解】由等比数列的性质可得,于是,解得.又,所以.【点睛】本题考查等比数列的基本性质.在等比数列中,若,则.特别地,若,则.12.某学校有教师200人,男学生1200人,女生1000人,用分层抽样的方法从全体学生中抽取一个容量为n的样本,若女生抽取80人,则n=_____________
参考答案:17613.奇函数的定义域是,当时,,则函数单调增区间是
;单调减区间是
;最大值是
;最小值是
。参考答案:,[-2,2],4,-4.14.已知,则的值为
.参考答案:略15.函数的最小正周期是__________.参考答案:2【分析】直接利用余弦函数的周期公式求解即可.【详解】函数的最小正周期是:2.故答案为:2.【点睛】本题考查三角函数的周期的求法,是基本知识的考查.16.已知,则=
;=
.参考答案:﹣;【考点】两角和与差的正弦函数;二倍角的余弦.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用同角三角函数的基本关系、诱导公式、二倍角公式、两角差的余弦公式,求得要求式子的值.【解答】解:∵已知,∴x+为钝角,则=sin=cos(x+)=﹣=﹣.∴sin(2x+)=2sin(x+)cos(x+)=2××(﹣)=﹣,cos(2x+)=2﹣1=2×﹣1=,∴=cos=cos(2x+)cos+sin(2x+)sin=+(﹣)×=,故答案为:.【点评】本题主要考查同角三角函数的基本关系、诱导公式、二倍角公式、两角差的余弦公式的应用,属于基础题.17.(4分)已知A(0,﹣1),B(﹣2a,0),C(1,1),D(2,4),若直线AB与直线CD垂直,则a的值为
.参考答案:考点: 两条直线垂直与倾斜角、斜率的关系.专题: 直线与圆.分析: 利用直线相互垂直与斜率之间的关系即可得出.解答: 解:∵kCD==3,kAB=,AB⊥CD.∴kCD?kAB=×3=﹣1,解得a=.故答案为:.点评: 本题考查了直线相互垂直与斜率之间的关系,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.
参考答案:证明:(1)连结BD.在正方体中,对角线.又E、F为棱AD、AB的中点,..
又B1D1平面,平面,
EF∥平面CB1D1.
(2)在正方体中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1,AA1⊥B1D1.又在正方形A1B1C1D1中,A1C1⊥B1D1,B1D1⊥平面CAA1C1.
又B1D1平面CB1D1,平面CAA1C1⊥平面CB1D1.略19.已知集合,,,全集.(1)求;(2)若,求实数的取值范围.参考答案:解:(1)因为集合,,所以.-----4分(2)因为,所以,又,,则,解得.所以实数的取值范围是[﹣2,﹣1)--------------(10分)(没有等号扣1分)略20.如图,摩天轮的半径为40m,O点距地面的高度为50m,摩天轮按逆时针方向作匀速转动,且每2min转一圈,摩天轮上点P的起始位置在最高点.(Ⅰ)试确定点P距离地面的高度h(单位:m)关于转动时间(单位:min)的函数关系式;(Ⅱ)摩天轮转动一圈内,有多长时间点P距离地面超过70m?参考答案:(1)(2)【分析】(1)由图形知,以点O为原点,所在直线为y轴,过O且与垂直的向右的方向为x轴建立坐标系,得出点P的纵坐标,由起始位置得即可得出在时刻tmin时P点距离地面的高度的函数;(2)由(1)中的函数,令函数值大于70解不等式即可得出P点距离地面超过70m的时间.【详解】(1)建立如图所示的平面直角坐标系,设是以轴正半轴为始边,(表示点的起始位置)为终边的角,由题点的起始位置在最高点知,,又由题知在内转过的角为,即,所以以轴正半轴为始边,为终边的角为,即点纵坐标为,所以点距离地面的高度关于旋转时间的函数关系式是,化简得.(2)当时,解得,又,所以符合题意的时间段为或,即在摩天轮转动一圈内,有点距离地面超过.21.(本题满分13分)下面是计算应纳税所得额的算法过程,其算法如下:第一步
输入工资x(注x<=5000);第二步
如果x<=800,那么y=0;如果800<x<=1300,那么y=0.05(x-800);否则
y=25+0.1(x-1300)第三步
输出税款y,结束。请写出该算法的程序框图和程序。(注意:程序框图与程序必须对应)参考答案:略22.某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3m2,可做A、B的外壳分别为6个和6个,求两种薄钢板各用多少张,才能使总的面积最小.参考答案:甲、乙两种薄钢板各5张,能保证制造A、B的两种外壳的用量,同时又能使用料总面积最小.【分析】本题可先将甲种薄钢板设为张,乙种薄钢板设为张,然后根据题意,得出两个不等式关系,也就是、以及薄钢板的总面积是,然后通过线性规划画出图像并求出总面积的最小值,最后得出结果。【详解】设甲种薄钢板张,乙种薄钢板张,则可做种产品外壳个,种产品外壳个,由题意可得,薄钢板的总面积是,可行域的阴影部分如图所示,其中,与的交点为,因目标函数在可行域上的最小值在区域边界的处取得,此时的最小值为即甲、乙两种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度城市供水供电工程合作合同
- 松土机市场发展现状调查及供需格局分析预测报告
- 2024年度危险品运输行业标准制定合同
- 2024年专利许可使用合同
- 自行车支架市场发展预测和趋势分析
- 2024年度危险废物运输合同
- 漱口水市场发展预测和趋势分析
- 2024年度版权质押合同:某出版公司与金融机构之间的合作
- 2024年度橙子文化传媒合同:品牌故事宣传与活动策划
- 2024年度商务咨询管理合同
- 湘教版区域地理 课件 第二讲《地图》
- 2024中国电子科技集团限公司在招企业校招+社招高频难、易错点500题模拟试题附带答案详解
- 新能源汽车运输合作协议
- 天津市西青区2023-2024学年九年级上学期期中英语试卷-
- 副校长试用期转正工作总结(5篇)
- 2024年玻璃钢通信管道项目可行性研究报告
- 《旅游大数据》-课程教学大纲
- 2024版细胞治疗技术服务合同
- 形势与政策24秋-专题测验1-5-国开-参考资料
- 组织汽车赛事行业深度分析与战略规划研究报告
- 2024年新人教版七年级上册历史 第14课 丝绸之路的开通与经营西域
评论
0/150
提交评论