版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章集合与函数概念1第一章集合与函数概念1新人教版数学必修一第一章-集合与函数概念(复习ppt课件)2新人教版数学必修一第一章-集合与函数概念(复习ppt课件)31.偶函数的定义:
如果对于函数f(x)的定义域内任意一个x都有f(-x)=f(x),那么函数f(x)就叫做偶函数.2.奇函数的定义:
如果对于函数f(x)的定义域内任意一个x都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.3.几个结论:(1)偶函数的图象关于y轴对称.(2)奇函数的图象关于原点对称.(3)函数y=f(x)是奇函数或偶函数的一个必不可少的条件是---定义域关于原点对称,否则它是非奇非偶函数.
(4)判断一个函数是否为奇(偶)函数还可用f(-x)±f(x)=0
或.知识回顾1.偶函数的定义:4
我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).1.集合的含义:2.集合元素的性质:4.数集及有关符号:5.集合的表示方法;
3.元素与集合的关系;确定性,互异性,无序性;a∈AaA非负整数集(或自然数集)正整数集整数集有理数集实数集记作N记作或记作Z记作Q记作R(1)列举法(2)描述法我们把研5对于两个集合A,B如果集合A中任意一个元素都是集合B中的元素,称集合A为集合B的子集,记作(或)3.集合相等的定义:
集合A是集合B的子集,且集合B是集合A的子集,因此,集合A与集合B相等.2.真子集的定义:记作(1).空集是任何集合的子集;
(2).任何一个集合是它本身的子集;(3).传递性:
4.子集的性质:1.子集的定义:(4).若集合A的元素个数为n,则它的子集有对于两个集61.并集的定义:2.交集的定义:A∩B={x|x∈A,且x∈B}(1).A∪A=A,A∩A=A;(2).A∪φ=A,A∩φ=φ;(3).若3.几个结论:4.补集的定义:映射的定义:设A,B是两个非空集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y和它对应,那么就称为从集A到集合B的一个映射。1.并集的定义:2.交集的定义:A∩B={x|x∈A,且x∈7
设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称为从集A到集合B的一个函数,记作y=f(x),.其中,x叫自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域。1.函数的定义:2.函数的三要素:定义域、对应关系和值域3.函数三种表示法:解析法;列表法;图象法。设A,B是非空数集,如果按照某种确定的对8
如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.
如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.1.增函数的定义:2.减函数的定义:3.最大(小)值的定义:设函数y=f(x)定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)M;(2)存在x0∈I,使得f(x0)=M.则称M是函数y=f(x)的最大(小)值.如果对于9例题讲解例题讲解10例题讲解例题讲解11例题讲解例题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金色的鱼钩教案范文10篇
- 半年个人工作计划
- 元宵大班教案
- 2021北师大版三年级数学下册教案设计
- 四年级上册语文教学计划4篇
- 等待高中作文(集锦15篇)
- 幼儿园毕业实习报告3篇
- 在外贸公司实习报告集合8篇
- 上半年道路交通安全工作总结
- 天宫课堂第三课300字作文10篇参考
- 广东省珠海市2023-2024学年高二上学期语文期中试卷(含答案)
- 山东省淄博市周村区(五四制)2023-2024学年七年级上学期期末考试英语试题(含答案无听力原文及音频)
- GB/T 44317-2024热塑性塑料内衬油管
- 七年级道德与法治期末复习计划范文两篇
- 酒店英语会话(第六版)教案全套 李永生 unit 1 Room Reservations -Unit 15 Handling Problems and Complaints
- 创伤失血性休克中国急诊专家共识2023解读课件
- 大学英语智慧树知到期末考试答案章节答案2024年海南经贸职业技术学院
- 执行力神经机制与脑成像研究
- 冷链物流高质量发展“十四五”规划
- 2024年新疆乌鲁木齐市选调生考试(公共基础知识)综合能力题库完美版
- 2024年中荆投资控股集团有限公司招聘笔试冲刺题(带答案解析)
评论
0/150
提交评论