版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
极差、方差极差、方差1为什么说两个城市,一个“四季如春”,一个“四季分明”?这里四季分明。这里四季如春情境引入:温差!为什么说两个城市,一个“四季如春”,一个“四季分明”?这里四2思考
什么样的指标可以反映一组数据变化范围的大小?
我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围.用这种方法得到的差称为极差
极差=最大值-最小值.
在生活中,我们常常会和极差打交道.班级里个子最高的学生比个子最矮的学生高多少?家庭中年纪最大的长辈比年纪最小的孩子大多少?这些都是求极差的例子.思考
什么样的指标可以反映一组数据变化范围的大小?3试一试:
1、3,4,2,1,5的平均数为
中位数为
;极差为
;2、a+3,a+4,a+2,a+1,a+5的平均数为
,中位数为
;极差为
。试一试:2、a+3,a+4,a+2,a+1,a+5的4实践应用
观察图20.2.1,分别说出两段时间内气温的极差.
解由图可知,图(a)中最高气温与最低气温之间差距很大,相差16℃,也就是极差为16℃;图(b)中所有气温的极差为7℃,所以从图中看,整段时间内气温变化的范围不太大.实践应用
观察图20.2.1,分别说出两段时间内气温的极差.5八年级数学下册206甲,乙两名射击手现要挑选一名射击手参加比赛.若你是教练,你认为挑选哪一位比较适宜?教练的烦恼?甲,乙两名射击手现要教练的烦恼?7第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068甲,乙两名射击手的测试成绩统计如下:⑴请分别计算两名射手的平均成绩;教练的烦恼?
=8(环)=8(环)甲x第一次第二次第三次第四次第五次甲命中环数78889乙命中环数8第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成绩统计如下:成绩(环)射击次序⑴请分别计算两名射手的平均成绩;⑵请根据这两名射击手的成绩在下图中画出折线统计图;教练的烦恼?第一次第二次第三次第四次第五次甲命中环数78889乙命中环数9第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击手的测试成绩统计如下:成绩(环)射击次序⑴请分别计算两名射手的平均成绩;⑵请根据这两名射击手的成绩在下图中画出折线统计图;⑶现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较适宜?为什么?教练的烦恼?第一次第二次第三次第四次第五次甲命中环数78889乙命中环数10谁的稳定性好?应以什么数据来衡量?甲射击成绩与平均成绩的偏差的和:乙射击成绩与平均成绩的偏差的和:(7-8)+(8-8)+(8-8)+(8-8)+(9-8)=0(10-8)+(6-8)+(10-8)+(6-8)+(8-8)=0怎么办?谁的稳定性好?应以什么数据来衡量?甲射击成绩与平均成绩的偏差11谁的稳定性好?应以什么数据来衡量?(10-8)2+(6-8)2+(10-8)2+(6-8)2+(8-8)2=(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2=甲射击成绩与平均成绩的偏差的平方和:乙射击成绩与平均成绩的偏差的平方和:找到啦!有区别了!216谁的稳定性好?应以什么数据来衡量?(10-8)2+(6-8)12想一想上述各偏差的平方和的大小还与什么有关?——与射击次数有关!所以要进一步用各偏差平方的平均数来衡量数据的稳定性设一组数据x1、x2、…、xn中,各数据与它们的平均数的差的平方分别是(x1-x)2、(x2-x)2、…(xn-x)2,那么我们用它们的平均数,即用S2=[(x1-x)2+(x2-x)2
+…+(xn-x)2
]1n想一想上述各偏差的平方和的大小还与什么有关?——与射击次数有13方差越大,说明数据的波动越大,越不稳定.方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).S2=[(x1-x)2+(x2-x)2
+…+(xn-x)2
]1n方差越大,说明数据的波动越大,越不稳定.方差用来衡量一批数据14例:为了考察甲、乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位:cm):甲:12131415101613111511乙:111617141319681016问哪种小麦长得比较整齐?练一练思考:求数据方差的一般步骤是什么?1、求数据的平均数;2、利用方差公式求方差。S2=[(x1-x)2+(x2-x)2
+…+(xn-x)2
]1n例:为了考察甲、乙两种小麦的长势,分别从中抽出10练一15例两台机床同时生产直径是40毫米的零件.为了检验产品质量,从产品中抽出10件进行测量,结果如下(单位:毫米):分别计算这两组数据的平均数
甲、乙两机床性能是否都一样好?例两台机床同时生产直径是40毫米
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机器人在旅游规划服务的创新考核试卷
- 人工智能在医疗诊断上的优势和限制考核试卷
- 放射性金属矿床的地学指标选用与开发利用考核试卷
- 电气机械技术在化学工程与生物技术中的应用考核试卷
- 印刷业在文化传承中的作用考核试卷
- DB11T 765.2-2010 档案数字化规范 第2部分:纸质档案数字化加工
- 蜜蜂主题课件教学课件
- DB11∕T 1771-2020 地源热泵系统运行技术规范
- 幼儿园万圣节活动方案
- 做家务课件教学课件
- 2024年国企改革培训
- 特种设备“日管控”安全检查记录、每周安全排查治理报告
- 2023年江苏南京航空航天大学工作人员招聘56人笔试《行政职业能力测验》模拟试卷(答案详解版)
- 2024年中国中煤能源集团限公司招聘10人高频考题难、易错点模拟试题(共500题)附带答案详解
- 心理健康科普文化墙
- 【川教版】《生态 生命 安全》四年级上册第10课《认识传染病》课件
- 装修垃圾清运处置方案
- 家庭影音室装修方案
- 艺术设计就业职业生涯规划
- 2024年浙江杭州滨江城建发展有限公司招聘笔试参考题库含答案解析
- 枪库应急处置预案
评论
0/150
提交评论