江苏省淮安、宿迁等2022-2023学年高二数学第二学期期末综合测试模拟试题含解析_第1页
江苏省淮安、宿迁等2022-2023学年高二数学第二学期期末综合测试模拟试题含解析_第2页
江苏省淮安、宿迁等2022-2023学年高二数学第二学期期末综合测试模拟试题含解析_第3页
江苏省淮安、宿迁等2022-2023学年高二数学第二学期期末综合测试模拟试题含解析_第4页
江苏省淮安、宿迁等2022-2023学年高二数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,那么集合=A. B. C. D.2.某次战役中,狙击手A受命射击敌机,若要击落敌机,需命中机首2次或命中机中3次或命中机尾1次,已知A每次射击,命中机首、机中、机尾的概率分别为0.2、0.4、0.1,未命中敌机的概率为0.3,且各次射击相互独立。若A至多射击两次,则他能击落敌机的概率为()A.0.23 B.0.2 C.0.16 D.0.13.由曲线,直线所围成的平面图形的面积为()A. B. C. D.4.已知圆,定点,点为圆上的动点,点在上,点在线段上,且满足,,则点的轨迹方程是()A. B.C. D.5.已知,且,函数的图象的相邻两条对称轴之间的距离等于,则的值为()A. B. C. D.6.复数是虚数单位的虚部是A. B.1 C. D.i7.若实数满足条件,则的最小值为A. B. C. D.8.函数的图象是由函数的图像向左平移个单位得到的,则()A. B. C. D.9.观察下列各式:,则的末尾两位数字为()A.49 B.43 C.07 D.0110.某同学将收集到的6组数据对,制作成如图所示的散点图(各点旁的数据为该点坐标),并由这6组数据计算得到回归直线:和相关系数.现给出以下3个结论:①;②直线恰过点;③.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③11.在极坐标系中,由三条直线,,围成的图形的面积为()A. B. C. D.12.已知函数,的值域是,则实数的取值范围是()A.(1,2) B. C.(1,3) D.(1,4)二、填空题:本题共4小题,每小题5分,共20分。13.化简__________.14.从1、3、5、7中任取2个数字,从0、2、4、6中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有________个.(用数字作答)15.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是__________.16.某技术学院为了让本校学生毕业时能有更好的就业基础,增设了平面设计、工程造价和心理咨询三门课程.现在有6名学生需从这三门课程中选择一门进修,且每门课程都有人选,则不同的选择方法共有______种(用数学作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围.18.(12分)中,三内角所对的边分别为,已知成等差数列.(Ⅰ)求证:;(Ⅱ)求角的取值范围.19.(12分)已知函数的图象过点.(1)求的解析式及单调区间;(2)求在上的最小值.20.(12分)已知函数.求的单调区间;若在处取得极值,直线y=与的图象有三个不同的交点,求的取值范围.21.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:,,,(I)从中任意拿取张卡片,若其中有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.22.(10分)设a∈R,函数f(1)当a=1时,求fx在3(2)设函数gx=fx+ax-1-e1-x,当g

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

直接进行交集的运算即可.【详解】∵M={0,1,2},N={x|0≤x<2};∴M∩N={0,1}.故选:B.【点睛】本题考查列举法、描述法的定义,以及交集的运算,属于基础题.2、A【解析】每次射击,命中机首、机中、机尾的概率分别为,未命中敌机的概率为,且各次射击相互独立,若射击一次就击落敌机,则他击中利敌机的机尾,故概率为;若射击次就击落敌机,则他次都击中利敌机的机首,概率为;或者第一次没有击中机尾、且第二次击中了机尾,概率为,若至多射击两次,则他能击落敌机的概率为,故选.3、C【解析】

由,解得,解得,解得,所围成的平面图形的面积为,则,,故选C.4、A【解析】试题分析:由,可知,直线为线段的中垂线,所以有,所以有,所以点的轨迹是以点为焦点的椭圆,且,即,所以椭圆方程为,故选A.考点:1.向量运算的几何意义;2.椭圆的定义与标准方程.【名师点睛】本题主要考查向量运算的几何意义、椭圆的定义与椭圆方程的求法,属中档题.求椭圆标准方程常用方法有:1.定义法,即根据题意得到所求点的轨迹是椭圆,并求出的值;2.选定系数法:根据题意先判断焦点在哪个坐标轴上,设出其标准方程,根据已知条件建立关系的方程组,解之即可.5、B【解析】试题分析:根据函数的图象的相邻两条对称轴之间的距离等于,可得.由,且,可得,∴,则,故选B.考点:正弦函数的图象.6、B【解析】

利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得答案.【详解】,复数的虚部是1.故选B.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7、B【解析】分析:作出约束条件的平面区域,易知z=的几何意义是点A(x,y)与点D(﹣1,0)连线的直线的斜率,从而解得.详解:由题意作实数x,y满足条件的平面区域如下,z=的几何意义是点P(x,y)与点D(﹣1,0),连线的直线的斜率,由,解得A(1,1)故当P在A时,z=有最小值,z==.故答案为:B.点睛:(1)本题主要考查线性规划和斜率的应用,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)表示两点所在直线的斜率.8、B【解析】

把的图像向左平移个单位后得到的图像,化简后可得的值,利用两角和的余弦和正弦展开后可得的值.【详解】把的图像向左平移个单位后得到所得图像的解析式为,根据可得①,所以即(舍),又对①化简可得,故,故选B.【点睛】三角函数的图像往往涉及振幅变换、周期变换和平移变换,注意左右平移时是自变量作相应的变化,而且周期变换和平移变换(左右平移)的次序对函数解析式的也有影响,比如,它可以由先向左平移个单位,再纵坐标不变,横坐标变为原来的,也可以先保持纵坐标不变,横坐标变为原来的,再向左平移..9、B【解析】

通过观察前几项,发现末尾两位数分别为49、43、01、07,以4为周期重复出现,由此即可推出的末尾两位数字。【详解】根据题意,得,发现的末尾两位数为49,的末尾两位数为43,的末尾两位数为01,的末尾两位数为07,();由于,所以的末两位数字为43;故答案选B【点睛】本题以求的末尾两位数的规律为载体,考查数列的通项公式和归纳推理的一般方法的知识,属于基础题。10、A【解析】

结合图像,计算,由求出,对选项中的命题判断正误即可得出结果.【详解】由图像可得,从左到右各点是上升排列的,变量具有正相关性,所以,①正确;由题中数据可得:,,所以回归直线过点,②正确;又,③错误.故选A【点睛】本题主要考查回归分析,以及变量间的相关性,熟记线性回归分析的基本思想即可,属于常考题型.11、B【解析】

求出直线与直线交点的极坐标,直线与直线交点的极坐标,然后利用三角形的面积公式可得出结果.【详解】设直线与直线交点的极坐标,则,得.设直线与直线交点的极坐标,则,即,得.因此,三条直线所围成的三角形的面积为,故选:B.【点睛】本题考查极坐标系中三角形面积的计算,主要确定出交点的极坐标,并利用三角形的面积公式进行计算,考查运算求解能力,属于中等题.12、B【解析】

先求出当x≤2时,f(x)≥4,则根据条件得到当x>2时,f(x)=3+logax≥4恒成立,利用对数函数的单调性进行求解即可.【详解】当x≤2时,f(x)=﹣x+6≥4,要使f(x)的值域是[4,+∞),则当x>2时,f(x)=3+logax≥4恒成立,即logax≥1,若0<a<1,则不等式logax≥1不成立,当a>1时,则由logax≥1=logaa,则a≤x,∵x>2,∴a≤2,即1<a≤2,故选:D.【点睛】本题主要考查函数值域的应用,利用分段函数的表达式先求出当x≤2时的函数的值域是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:利用二项式逆定理即可.详解:(展开式实部)(展开式实部).故答案为:.点睛:本题考查二项式定理的逆应用,考查推理论证能力.14、1【解析】

题目要求得到能被5整除的数字,注意0和5的排列,分三种情况进行讨论,四位数中包含5和0的情况,四位数中包含5,不含0的情况,四位数中包含0,不含5的情况,根据分步计数原理得到结果.【详解】解:①四位数中包含5和0的情况:.②四位数中包含5,不含0的情况:.③四位数中包含0,不含5的情况:.四位数总数为.故答案为:1.【点睛】本题是一个典型的排列问题,数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏,属于中档题.15、【解析】分析:令y′≥1在(1,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的范围.详解:y′=+2ax,x∈(1,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥1在(1,+∞)上恒成立,∴a≥﹣恒成立,x∈(1,+∞).令f(x)=﹣,x∈(1,+∞),则f(x)在(1,+∞)上单调递增,又f(x)=﹣<1,∴a≥1.故答案为:.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.16、540【解析】

根据题意可知有3种不同的分组方法,依次求出每种的个数再相加即得.【详解】由题可知6名学生不同的分组方法有三类:①4,1,1;②3,2,1;③2,2,2.所以不同的选择方法共有种.【点睛】本题考查计数原理,章节知识点涵盖全面.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(1)利用导数求得斜率,再求得切点坐标,由此求得切线方程.(II)将原不等式分离常数得,构造函数,利用导数求得,由此求得的取值范围.【详解】解:(Ⅰ)的导数为,可得切线的斜率为1,切点为,切线方程为,即;(Ⅱ)若在上恒成立,可得在上恒成立,令,则,,可得在上单调递增,则,可得在上单调递增,则,则.【点睛】本小题主要考查切线方程的求法,考查利用导数求解不等式恒成立问题,属于中档题.18、(Ⅰ)见证明;(Ⅱ)【解析】

(Ⅰ)由成等差数列,可得,结合基本不等式和正弦定理可以证明出;(Ⅱ)运用余弦定理可以求出的表达式,利用重要不等式和(Ⅰ)中的结论,可以求出,结合余弦函数的图象和角是三角形的内角,最后可求出角的取值范围.【详解】解:(Ⅰ)成等差数列,,,即,当且仅当时取等号由正弦定理得(Ⅱ)由余弦定理,当且仅当时取等号由(Ⅰ)得,,,故角的取值范围是【点睛】本题考查了等差中项的概念,考查了正弦定理、余弦定理、重要不等式和基本不等式,考查了余弦函数的图象,是一道综合性很强的题目.19、(1);单调递减区间为,单调递增区间为.(2)【解析】

(1)先由函数图像过点,求出,得到函数解析式,再对函数求导,用导数的方法,即可得出函数的单调区间;(2)先令在上的最小值为,结合(1)的结果,分别讨论和两种情况,即可求出函数的最小值.【详解】(1)∵函数的图象过点∴∴故.令得当时,,此时单调递减当时,,此时单调递增.所以,单调递减区间为,单调递增区间为.(2)令在上的最小值为,由(1)知,当时当,在上单调递增,∴综上所述:的最小值.【点睛】本题主要考查函数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性,最值等即可,属于常考题型.20、【解析】

解:(Ⅰ),

①当a<0时,f′(x)>0,f(x)在R上单调递增;

②当a>0时,由f′(x)>0即,解得或,

由f′(x)<0得,

∴f(x)的单调增区间为和(,+∞);f(x)的单调减区间是.

(Ⅱ)因为f(x)在x=−1处取得极大值,

所以,∴a=1.

所以,

由f′(x)=0解得.

由(1)中f(x)的单调性可知,f(x)在x=−1处取得极大值f(−1)=1,

在x=1处取得极小值f(1)=−2.

因为直线y=m与函数y=f(x)的图象有三个不同的交点,

结合f(x)的单调性可知,m的取值范围是(−2,1);21、(1)(2)数学期望为.【解析】

(Ⅰ)所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数,先求出基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,再求出满足条件的基本事件个数为,由此能求出结果.(Ⅱ)ξ可取1,2,3,1.分别求出对应的概率,由此能求出ξ的分布列和数学期望.【详解】解:(Ⅰ)为奇函数;为偶函数;为偶函数;为奇函数;为偶函数;为奇函数,所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,满足条件的基本事件个数为,故所求概率.(Ⅱ)可取;;;故的分布列为.的数学期望为.【点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题.求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论