版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、掌握二面角的定义法;2、掌握二面角的三垂线法;3、掌握二面角的垂面法;4、掌握二面角的射影面积法;5、掌握二面角的向量法。学习目标:1、掌握二面角的定义法;学习目标:1
从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的定义:复习:2、二面角的表示方法AB二面角-AB-l二面角-l-二面角C-AB-DABCDABCEFD二面角C-AB-E1、定义从一条直线出发的两个半平面所组成的图形叫做二面角,2二面角的平面角:
ABP
l二面角的平面角必须满足:3)角的两边都要垂直于二面角的棱1)角的顶点在棱上2)角的两边分别在两个面内二面角的平面角的范围:0180
二面角的大小用它的平面角的大小来度量以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。A1B1P1注意:(与顶点位置无关)∠APB=∠A1P1B1二面角的平面角:ABP3一、几何法:1、定义法:以二面角的棱a上任意一点O为端点,在两个面内分别作垂直于a的两条射线OA,OB,则∠AOB就是此二面角的平面角。aOAB在一个平面内选一点A向另一平面作垂线AB,垂足为B,再过点B向棱a作垂线BO,垂足为O,连结AO,则∠AOB就是二面角的平面角。3、垂面法:过二面角内一点A作AB⊥于B,作AC⊥于C,面ABC交棱a于点O,则∠BOC就是二面角的平面角。aABCO2、三垂线法:ABOa一、几何法:1、定义法:以二面角的棱a上任意一点O为端点,在4PABCD过E作ED⊥PC于D,则∠BDE就是此二面角的平面角。连结BD,过B作BE⊥AC于E,E
∵△ABC为正△,∴BE=在Rt△PAC中,E为AC中点,则DE=在Rt△DEB中tan∠BDE=∴∠BDE=arctan例1:已知正三角形ABC,PA⊥面ABC,且PA=AB=a,求二面角A-PC-B的大小。三垂线法:PABCD过E作ED⊥PC于D,则∠BDE就是此二面角5几点说明:⑴定义法是选择一个平面内的一点(一般为这个面的一个顶点)向棱作垂线,再由垂足在另一个面内作棱的垂线。此法得出的平面角在任意三角形中,所以不好计算,不是我们首选的方法。⑵三垂线法是从一个平面内选一点(一般为这个面的一个顶点)向另一个面作垂线,再由垂足向棱作垂线,连结这个点和棱上垂足。此法得出的平面角在直角三角形中,计算简便,所以我们常用此法。⑶垂面法需在二面角之间找一点向两面作垂线,因为这一点不好选择,所以此法一般不用。⑷以上三种方法作平面角都需写出作法、证明、指出平面角。⑸射影法是在不易作出平面角时用。在解答题中要先证明射影面积公式,然后指出平面的垂线,射影关系,再用公式,这种方法虽然避免了找平面角,但计算较繁,所以不常用。几点说明:⑴定义法是选择一个平面内的一点(一般为这个面的一个6练习1:正方体ABCD-A1B1C1D1中,E为棱AA1的中点,求平面EB1C和平面ABCD所成的二面角。ABCDA1B1C1D1E练习1:正方体ABCD-A1B1C1D1中,7EFGABDCA1B1D1C1HFGBCDAH练习2:在正方体AC1中,E,F分别是中点,求截面A1ECF和底面ABCD所成的锐二面角的大小。EFGABDCA1B1D1C1HFGBCDAH练习2:在正方8EFGABDCA1B1D1C1FGBCDAFEA1C练习2:在正方体AC1中,E,F分别是中点,求截面A1ECF和底面ABCD所成的锐二面角的大小。EFGABDCA1B1D1C1FGBCDAFEA1C练习2:9练习3:三棱锥P-ABC中,PA⊥平面ABC,PA=3,AC=4,PB=PC=BC(1)求二面角P-BC-A的大小;(2)求二面角A-PC-B的大小。PABCDE练习3:三棱锥P-ABC中,PA⊥平面ABC,PA=3,A101、方向向量法:二、向量法:lABCD将二面角转化为二面角的两个面的方向向量(在二面角的面内垂直于二面角的棱且指向该面方向的向量)所成的角。1、方向向量法:二、向量法:lABCD将二面角转化为二面角的11xyz解:建立如图所示的空间直角坐标系D-xyz,不妨设正方体的棱长为2,BD的中点为O,则B(2,2,0),A1(2,0,2),C1(0,2,2),O(1,1,0)∴A1O⊥BD,C1O⊥BD∴即为二面角A1-BD-C1的平面角。∴二面角A1-BD-C1的大小为xyz解:建立如图所示的空间直角坐标系D-xyz,不妨设正方12求二面角的大小,先求出两个半平面的法向量的夹角,然后根据二面角与其大小相等或互补求出二面角的大小。mn如图:二面角的大小等于-<m,n>2、平面法向量法:求二面角的大小,先求出两个半平面的法向量的夹角,然后根据二面132、平面法向量法:求二面角的大小,先求出两个半平面的法向量的夹角,然后根据二面角与其大小相等或互补求出二面角的大小。mnαβ如图:二面角的大小等于<m,n>2、平面法向量法:求二面角的大小,先求出两个半平面的法向量的14例4:在底面是直角梯形的四棱锥S—ABCD中,∠ABC=90°,SA⊥面ABCD,
AD=
SA=AB=BC=1,求面SCD与面SBA所成的二面角的大小.xyz解:以A为原点,如图建立空间直角坐标系。例4:在底面是直角梯形的四棱锥S—ABCDxyz解:以A为原15因为二面角为锐角。因为二面角为锐角。16xyzxyz17二面角求法(精华版)ppt课件18二面角求法(精华版)ppt课件19小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡下年工作计划例文
- 交警个人半年工作计划范文书
- 区就业服务管理局年度工作总结暨工作计划
- 《财产税行为税》课件
- 2024村卫生室工作计划例文
- 人教版小学五年级第九册语文教学计划
- 董事长秘书工作计划
- XX-2021第二学期学校德育工作计划
- 道德工作计划集合
- 咖啡店商业计划书
- 2024陕西陕煤澄合矿业有限公司招聘笔试参考题库附带答案详解
- 施工环境保护培训课件
- 中国阴离子交换膜行业调研分析报告2024年
- 工会工作汇报课件
- 2024年湖南外贸职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 青海省海东市互助土族自治县2023-2024学年八年级上册期末数学模拟试题(附答案)
- 第23课+人类社会面临的机遇与挑战(新教材课件)【中职专用】《世界历史》(高教版2023基础模块)
- 个人生涯发展报告
- 《同型半胱氨酸》课件
- 电气工程及其自动化讲座
- 2023河南中医药大学学士学位英语题
评论
0/150
提交评论