2022-2023学年浙江省衢州市石梁镇中学高一数学文期末试题含解析_第1页
2022-2023学年浙江省衢州市石梁镇中学高一数学文期末试题含解析_第2页
2022-2023学年浙江省衢州市石梁镇中学高一数学文期末试题含解析_第3页
2022-2023学年浙江省衢州市石梁镇中学高一数学文期末试题含解析_第4页
2022-2023学年浙江省衢州市石梁镇中学高一数学文期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年浙江省衢州市石梁镇中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,,则函数的图象一定不过(

).A.第一象限

B.第二象限

C.第三象限

D.第四象限参考答案:D试题分析:指数函数为增函数,过第一二象限,只需将向下平移个单位,其中,所以图像不过第四象限.考点:指数函数性质及图像平移.2.若函数的定义域为,则实数的取值范围是(

).A.

B.

C.

D.参考答案:B略3.函数的定义域为()A.[,3)∪(3,+∞) B.(-∞,3)∪(3,+∞)C.[,+∞) D.(3,+∞)参考答案:A【分析】根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数,解得且;函数的定义域为,故选A.【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数的定义域为,则函数的定义域由不等式求出.

4.已知集合是平行四边形,是矩形,是正方形,是菱形,则A. B. C. D.参考答案:B5.点A(sin2015°,cos2015°)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A【考点】三角函数线;运用诱导公式化简求值.【分析】利用判断终边所在象限,三角函数在的符号,判断所在象限即可.【解答】解:2015°=1800°+215°,点A(sin2015°,cos2015°)即A(sin215°,cos215°),sin215°<0,cos215°<0.A是第三象限的坐标.故选:A.6.某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+4000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为()A.200本 B.400本 C.600本 D.800本参考答案:D该厂为了不亏本,日印图书至少为x本,则利润函数f(x)=10x﹣(5x+4000)≥0,由此能求出结果.解:该厂为了不亏本,日印图书至少为x本,则利润函数f(x)=10x﹣(5x+4000)≥0,解得x≥800.∴该厂为了不亏本,日印图书至少为800本.故选:D.7.在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是() A.x>2 B.x<2 C. D.参考答案:C【考点】正弦定理的应用. 【分析】利用正弦定理和b和sinB求得a和sinA的关系,利用B求得A+C;要使三角形两个这两个值互补先看若A≤45°,则和A互补的角大于135°进而推断出A+B>180°与三角形内角和矛盾;进而可推断出45°<A<135°若A=90,这样补角也是90°,一解不符合题意进而可推断出sinA的范围,利用sinA和a的关系求得a的范围. 【解答】解:==2 ∴a=2sinA A+C=180°﹣45°=135° A有两个值,则这两个值互补 若A≤45°,则C≥90°, 这样A+B>180°,不成立 ∴45°<A<135° 又若A=90,这样补角也是90°,一解 所以<sinA<1 a=2sinA 所以2<a<2 故选C 【点评】本题主要考查了正弦定理的应用.考查了学生分析问题和解决问题的能力. 8.函数f(x)=sin2x和函数g(x)的部分图象如图所示,则函数g(x)的解析式可以是()A.g(x)=sin(2x﹣) B.g(x)=sin(2x+) C.g(x)=cos(2x+) D.g(x)=cos(2x﹣)参考答案:C【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由图象可得g(x)的图象经过点(,),逐个选项验证可得.【解答】解:代值计算可得f()=sin=,由图象可得g(x)的图象经过点(,),代入验证可得选项A,g()=sin≠,故错误;选项B,g()=sin≠,故错误;选项D,g()=cos=﹣cos=≠,故错误;选项C,g()=cos=cos=,故正确.故选:C.9.给出下列五个命题,正确的个数有()①映射f:A→B是从集合A到集合B的一种对应关系,该对应允许集合B中的部分元素在A中没有原像;②函数f(x)的图象与直线x=t有一个交点;③函数f(x)对任意的x,都有f(x+y)=f(x)+f(y)成立,则f(x)是奇函数.④若函数f(2x﹣1)的定义域为[0,1],则f(x)的定义域为[﹣1,1].A.1个 B.2个 C.3个 D.4个参考答案:C【考点】映射.【分析】对4个命题分别进行判断,即可得出结论.【解答】解:①映射f:A→B是从集合A到集合B的一种对应关系,该对应允许集合B中的部分元素在A中没有原像,正确;②函数f(x)的图象与直线x=t有一个或0个交点,不正确;③函数f(x)对任意的x,都有f(x+y)=f(x)+f(y)成立,则f(0)=0,f(x)+(f(﹣x)=0,故f(x)是奇函数,正确.④若函数f(2x﹣1)的定义域为[0,1],则2x﹣1∈[﹣1,1],即f(x)的定义域为[﹣1,1],正确.故选C.10.在△ABC中,a=4,,角A=30°,则角B等于 ().A.30°

B.30°或150°

C.60°

D.60°或120°参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.(5分)已知函数f(x)=loga(x+1)(a>0,a≠1)在上的值域是,若函数g(x)=ax﹣m﹣4的图象不过第二象限,则m的取值范围是

参考答案:m≥﹣2考点:对数函数的图像与性质.专题:函数的性质及应用.分析:对a分类讨论:利用对数函数的单调性可得a=2.由于函数g(x)=2x﹣m﹣4的图象不过第二象限,可得g(0)≤0,解出即可.解答:当a>1时,函数f(x)在上单调递增,∴loga1=0,loga2=1,解得a=2.当0<a<1时,函数f(x)在上单调递减,∴loga1=1,loga2=0,舍去.故a=2.∵函数g(x)=2x﹣m﹣4的图象不过第二象限,∴g(0)=2﹣m﹣4≤0,∴﹣m≤2,解得m≥﹣2.点评:本题考查了指数函数与对数函数的单调性,考查了数形结合的思想方法、推理能力与计算能力,属于中档题.12.=__________参考答案:13.若角均为锐角,,,则的值为

.参考答案:3因为为锐角,且,所以,,又因为,所以;故填3.

14.由可以推出的范围是________。参考答案:略15.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我没去过C城市;乙说:我去过的城市比甲多,但没去过B城市;丙说:我们三人去过同一城市.由此可判断甲去过的城市为

参考答案:A由甲说:我没去过C城市,则甲可能去过A城市或B城市,但乙说:我去过的城市比甲多,但没去过B城市,则甲只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断甲去过的城市为A(因为乙没有去过B).故甲去过的城市为A.

16.在函数①;②;③中,满足性质的是函数

(填写所有满足要求的函数序号)。参考答案:②③17.正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为____________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=2a[1+sin(cos﹣sin)]+b.(1)当a=1时,求f(x)的单调递增区间;(2)当a>0,且x∈[0,π]时,f(x)的值域是[3,4],求a,b的值.参考答案:【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)当a=1时,化简f(x),利用辅助角公式求出函数f(x)的解析式,结合函数单调性的性质进行求解即可.(2)求出函数f(x)的解析式,结合函数的值域建立方程关系进行求解即可.【解答】解:(1)当a=1时,f(x)=2+2sincos﹣2sin2+b=1+cosx+sinx+b=sin(x+)+b+1,由2kπ﹣≤x+≤2kπ+,k∈Z,得2kπ﹣≤x≤2kπ+,k∈Z,即函数的单调递增区间是[2kπ﹣,2kπ+],k∈Z;(2)f(x)=2a[1+sin(cos﹣sin)]+b=a(sinx+cosx)+a+b=asin(x+)+a+b,当a>0,且x∈[0,π]时,≤x+≤,∴sin(x+)∈[﹣,1],∵f(x)的值域是[3,4],∴得.【点评】本题主要考查三角函数的图象和性质,利用倍角公式以及辅助角公式进行化简是解决本题的关键.19.设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|.(1)若a=3,求f(2)的值;

(2)求f(x)的最小值.参考答案:【考点】函数的最值及其几何意义;二次函数的性质.【分析】(1)代值计算即可,(2)分x≥a和x<a两种情况来讨论去绝对值,再对每一段分别求最小值,借助二次函数的对称轴及单调性.最后综合即可.【解答】解:(1)当a=3时,f(x)=2x2+(x﹣3)|x﹣3|,∴f(2)=2×4+(2﹣3)×|2﹣3|=8﹣1=7,(2)当x≥a时,f(x)=3x2﹣2ax+a2,∴f(x)min==,如图所示:当x≤a时,f(x)=x2+2ax﹣a2,∴f(x)min==.综上所述:f(x)min=20.联合国教科文组织规定:一个国家或地区60岁以上的人口占该国或该地区人口总数的10%以上(含10%),该国家或地区就进入了老龄化社会,结合统计数据发现,某地区人口数在一段时间内可近似表示为P(x)=(万),60岁以上的人口数可近似表示为L(x)=10×[1+k%?(x﹣2010)](万)(x为年份,W,k为常数),根据第六次全国人口普查公报,2010年该地区人口共计105万.(Ⅰ)求W的值,判断未来该地区的人口总数是否有可能突破142万,并说明理由;(Ⅱ)已知该地区2013年恰好进入老龄化社会,请预测2040年该地区60岁以上人口数(精确到1万).参考数据“0.942=0.88,0.943=0.83,139420=0.29,0.9430=0.16.参考答案:【考点】函数模型的选择与应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)利用2010年该地区人口共计105万求W的值,利用≥142,即可判断未来该地区的人口总数是否有可能突破142万;(Ⅱ)利用该地区2013年恰好进入老龄化社会,求出k%≈,即可预测2040年该地区60岁以上人口数.【解答】解:(Ⅰ)∵2010年该地区人口共计105万,∴x=2010,P==105,∴W≈142.令≥142,∴0.35×(0.94)x﹣2010≤0无解,∴未来该地区的人口总数不可能突破142万;(Ⅰ)∵该地区2013年恰好进入老龄化社会,∴10×[1+k%?(2013﹣2010)]=10%×,∴k%≈,∴x=2040,L(2040)≈10×[1+?(2040﹣2010)]=20万【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,正确理解题意是关键.21.已知函数f(x)=4x2﹣4ax+(a2﹣2a+2).(1)若a=1,求f(x)在闭区间[0,2]上的值域;(2)若f(x)在闭区间[0,2]上有最小值3,求实数a的值.参考答案:【考点】函数的最值及其几何意义;函数的值域;二次函数的性质.【专题】分类讨论;函数的性质及应用.【分析】(1)求出函数的对称轴,讨论对称轴和区间的关系,即可得到值域;(2)将f(x)配方,求得对称轴,讨论区间和对称轴的关系,运用单调性,可得最小值,解方程可得a的值.【解答】解:(1),x=时,取得最小值0,x=2时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论