宁波市重点中学2023年数学高二第二学期期末学业质量监测试题含解析_第1页
宁波市重点中学2023年数学高二第二学期期末学业质量监测试题含解析_第2页
宁波市重点中学2023年数学高二第二学期期末学业质量监测试题含解析_第3页
宁波市重点中学2023年数学高二第二学期期末学业质量监测试题含解析_第4页
宁波市重点中学2023年数学高二第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象向右平移个单位后所得的图象关于原点对称,则可以是()A. B. C. D.2.设平面向量,则与垂直的向量可以是()A. B. C. D.3.已知随机变量Z服从正态分布N(0,),若P(Z>2)=0.023,则P(-2≤Z≤2)=A.0.477 B.0.625 C.0.954 D.0.9774.设a=e1eA.a>c>b B.c>a>b C.c>b>a D.a>b>c5.设命题:,,则为()A., B.,C., D.,6.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.7.i是虚数单位,若集合S=,则A. B. C. D.8.已知函数,,若有最小值,则实数的取值范围是()A. B. C. D.9.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是()A. B.C. D.10.执行如图的程序框图,若输出的,则输入的整数的最小值是()A. B. C. D.11.某校高中三个年级人数饼图如图所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为()A.24 B.30 C.32 D.3512.已知函数,,则其导函数的图象大致是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13._________.14.正四棱柱的底面边长为2,若与底面ABCD所成角为60°,则和底面ABCD的距离是________15.数列的前n项和记为,则__________.16.已知函数,使在上取得最大值3,最小值-29,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最大值,若实数满足,求的最小值.18.(12分)在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加复活赛,如果通过,也可以参加第二轮比赛.(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,求a的值及估计这200名参赛选手的成绩平均数;(2)根据已有的经验,参加复活赛的选手能够进入第二轮比赛的概率为,假设每名选手能否通过复活赛相互独立,现有3名选手进入复活赛,记这3名选手在复活赛中通过的人数为随机变量X,求X的分布列和数学期望.19.(12分)某城市理论预测2010年到2014年人口总数与年份的关系如下表所示年份2010+x(年)01234人口数y(十万)5781119(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)据此估计2015年该城市人口总数.20.(12分)已知:方程表示焦点在轴上的椭圆;:双曲线的实轴长大于虚轴长.若命题“”为真命题,“”为假命题,求的取值范围.21.(12分)在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)求曲线上的直线距离最大的点的直角坐标.22.(10分)已知函数.(1)当时,求函数的单调区间;(2)是否存在实数a,使函数在上单调递增?若存在,求出a的取值范围;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

求出函数图象平移后的函数解析式,再利用函数图象关于原点对称,即,求出,比较可得.【详解】函数的图象向右平移个单位后得到.此函数图象关于原点对称,所以.所以.当时,.故选B.【点睛】由的图象,利用图象变换作函数的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是个单位;而先周期变换(伸缩变换)再平移变换,平移的量是个单位.2、D【解析】分析:先由平面向量的加法运算和数乘运算得到,再利用数量积为0进行判定.详解:由题意,得,因为,,,,故选D.点睛:本题考查平面向量的坐标运算、平面向量垂直的判定等知识,意在考查学生的逻辑思维能力和基本计算能力.3、C【解析】因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.【命题意图】本题考查正态分布的基础知识,掌握其基础知识是解答好本题的关键.4、B【解析】

依据y=lnx的单调性即可得出【详解】∵b=ln而a=e1e>0,c=又lna=lne1所以lnc>lna,即有c>a,因此c>a>b【点睛】本题主要考查利用函数的单调性比较大小。5、D【解析】分析:直接利用特称命题的否定解答.详解:由特称命题的否定得为:,,故答案为:D.点睛:(1)本题主要考查特称命题的否定,意在考查学生对该知识的掌握水平.(2)特称命题,特称命题的否定.6、D【解析】

首先判断函数单调性为增.,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.【点睛】本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.7、B【解析】

试题分析:由可得,,,,.考点:复数的计算,元素与集合的关系.8、C【解析】

对函数求导得出,由题意得出函数在上存在极小值点,然后对参数分类讨论,在时,函数单调递增,无最小值;在时,根据函数的单调性得出,从而求出实数的取值范围.【详解】,,构造函数,其中,则.①当时,对任意的,,则函数在上单调递减,此时,,则对任意的,.此时,函数在区间上单调递增,无最小值;②当时,解方程,得.当时,,当时,,此时,.(i)当时,即当时,则对任意的,,此时,函数在区间上单调递增,无最小值;(ii)当时,即当时,,当时,,由零点存在定理可知,存在和,使得,即,且当和时,,此时,;当时,,此时,.所以,函数在处取得极大值,在取得极小值,由题意可知,,,可得,又,可得,构造函数,其中,则,此时,函数在区间上单调递增,当时,则,.因此,实数的取值范围是,故选:C.9、D【解析】

构造函数,利用函数导数判断函数的单调性,将代入函数,根据单调性选出正确的选项.【详解】构造函数,依题意,故函数在定义域上为增函数,由得,即,排除A选项.由得,即,排除B选项.由得,即,排除C,选项.由得,即,D选项正确,故选D.【点睛】本小题主要考查构造函数法比较大小,考查函数导数的概念,考查函数导数运算,属于基础题.10、A【解析】

列举出算法的每一步循环,根据算法输出结果计算出实数的取值范围,于此可得出整数的最小值.【详解】满足条件,执行第一次循环,,;满足条件,执行第二次循环,,;满足条件,执行第二次循环,,.满足条件,调出循环体,输出的值为.由上可知,,因此,输入的整数的最小值是,故选A.【点睛】本题考查算法框图的应用,解这类问题,通常列出每一次循环,找出其规律,进而对问题进行解答,考查分析问题和解决问题的能力,属于中等题.11、C【解析】分析:本题考查的知识点是分层抽样,根据分层抽样的方法,由样本中高一年级学生有8人,所占比例为25%,即可计算.详解:由分层抽样的方法可设样本中有高中三个年级学生人数为x人,则,解得:.故选:C.点睛:分层抽样的方法步骤为:首先确定分层抽取的个数,分层后,各层的抽取一定要考虑到个体数目,选取不同的抽样方法,但一定要注意按比例抽取,其中按比例是解决本题的关键.12、C【解析】试题分析:,为偶函数,当且时,或,所以选择C。考点:1.导数运算;2.函数图象。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,则,然后根据定积分公式计算可得.【详解】设,则,所以===.故答案为:.【点睛】本题考查了定积分的计算,属基础题.14、.【解析】分析:确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高,即可求得结论.详解:∵正四棱柱ABCD﹣A1B1C1D1,∴平面ABCD∥平面A1B1C1D1,∵A1C1⊂平面A1B1C1D1,∴A1C1∥平面ABCD∴A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高∵正四棱柱ABCD﹣A1B1C1D1的底面边长为2,AC1与底面ABCD成60°角,∴A1A=2tan60°=故答案为.点睛:本题考查线面距离,确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.15、【解析】试题分析:由可得:,所以,则数列是等比数列,首项为3,公比为3,所以。考点:数列求通项公式。16、3【解析】分析:求函数的导数,可判断在上的单调性,求出函数在闭区间上的极大值,可得最大值,从而可得结果.详解:函数的的导数,,由解得,此时函数单调递减.由,解得或,此时函数单调递增.即函数在上单调递增,在上单调递减,即函数在处取得极大值同时也是最大值,则,故答案为.点睛:本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题.求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由定义域为,只需求解的最小值,即可得实数的取值范围;(2)根据(1)求得实数的值,利用基本不等式即可求解最小值.【详解】(1)函数的定义域为.对任意的恒成立,令,则,结合的图像易知的最小值为,所以实数的取值范围.(2)由(1)得,则,所以,,当且仅当,即,,时等号成立,的最小值为.【点睛】本题主要考查了含绝对值函数的最值,转化思想和基本不等式的应用,考查了分析能力和计算能力,属于难题.18、(1),82;(2)见解析【解析】

(1)由频率分布直方图面积和为1,可求得.取每个矩形的中点与概率乘积和求得平均数.(2)由二项分布求得分布列与数学期望.【详解】1由题意:,估计这200名选手的成绩平均数为.2由题意知,XB(3,1/3),X可能取值为0,1,2,3,,所以X的分布列为

X的数学期望为

.【点睛】本题主要考查随机变量的分布列和期望,考查独立性检验,意在考查离散型随机变量的分布列期望和独立性检验等基础知识的掌握能力,考查学生基本的运算推理能力.19、(1);(2)196万.【解析】试题分析:(1)先求出五对数据的平均数,求出年份和人口数的平均数,得到样本中心点,把所给的数据代入公式,利用最小二乘法求出线性回归方程的系数,再求出a的值,从而得到线性回归方程;(2)把x=5代入线性回归方程,得到,即2015年该城市人口数大约为19.6(十万).试题解析:解:(1),=0×5+1×7+2×8+3×11+4×19=132,=故y关于x的线性回归方程为(2)当x=5时,,即据此估计2015年该城市人口总数约为196万.考点:线性回归方程.20、【解析】试题分析:若真,则,解得的范围,若真,则,且,解得的范围,由为真命题,为假命题,可得,中有且只有一个为真命题,即必一真一假,即可求得的范围.试题解析:若真,则,解得:.若真,则,且,解得:.∵为真命题,为假命题∴,中有且只有一个为真命题,即必一真一假①若真假,则即;②若假真,则即.∴实数的取值范围为:点睛:根据命题的真假求参数的取值范围的方法:(1)求出当命题,为真命题时所含参数的取值范围;(2)判断命题,的真假性;(3)根据命题的真假情况,利用集合交集和补集的运算,求解参数的取值范围.21、(1)(2)【解析】分析:(1)利用极坐标与直角坐标互化公式可得曲线的直角坐标方程为.(2)直线方程为,设圆上点的坐标为,结合点到直线距离公式和三角函数的性质可知满足题意时点坐标为.详解:(1)因为,,,所以曲线的直角坐标方程为.(2)直线方程为,圆的标准方程为,所以设圆上点坐标为,则,所以当,即时距离最大,此时点坐标为.点睛:本题主要考查极坐标方程与直角坐标方程的转化,直线与圆的位置关系,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论