黑龙江哈尔滨市第九中学2022-2023学年高二数学第二学期期末达标检测模拟试题含解析_第1页
黑龙江哈尔滨市第九中学2022-2023学年高二数学第二学期期末达标检测模拟试题含解析_第2页
黑龙江哈尔滨市第九中学2022-2023学年高二数学第二学期期末达标检测模拟试题含解析_第3页
黑龙江哈尔滨市第九中学2022-2023学年高二数学第二学期期末达标检测模拟试题含解析_第4页
黑龙江哈尔滨市第九中学2022-2023学年高二数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,则函数的定义域为()A. B. C. D.2.如图是由正方体与三棱锥组合而成的几何体的三视图,则该几何体的表面积为()A.28+43 B.36+43 C.28+3.椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为()A. B. C. D.4.某县城中学安排4位教师去3所不同的村小支教,每位教师只能支教一所村小,且每所村小有老师支教.甲老师主动要求去最偏远的村小A,则不同的安排有()A.6 B.12 C.18 D.245.已知实数满足,且,则A. B.2 C.4 D.86.命题,,则为()A., B.,C., D.,7.下列命题是真命题的为()A.若,则 B.若,则C.若,则 D.若,则8.下列命题中,真命题是A.若,且,则中至少有一个大于1B.C.的充要条件是D.9.由曲线xy=1,直线y=x,x=3及x轴所围成的曲边四边形的面积为()A.116B.92C.110.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.若,则的值为()A.-2 B.-1 C.0 D.112.某人考试,共有5题,至少解对4题为及格,若他解一道题正确的概率为0.6,则他及格的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设集合,,,(1)的取值范围是;(2)若,且的最大值为9,则的值是.14.的展开式中常数项是_____________.15.将红、黑、蓝、黄个不同的小球放入个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为________.(用数字作答)16.设函数.若为奇函数,则曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)正项数列的前项和满足.(Ⅰ)求,,;(Ⅱ)猜想的通项公式,并用数学归纳法证明.18.(12分)某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.(1)求一名顾客在一次摸奖活动中获得元的概率;(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值及此时的直角坐标.20.(12分)为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了111名用户进行调查,得到如下数据:每周使用次数1次2次3次4次5次6次及以上男4337831女6544621合计1187111451认为每周使用超过3次的用户为“喜欢骑共享单车”.(1)分别估算男、女“喜欢骑共享单车”的概率;(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.不喜欢骑共享单车喜欢骑共享单车合计男女合计附表及公式:k2=nP(1.151.111.151.1251.1111.1151.111k2.1722.7163.8415.1246.6357.87911.82821.(12分)[选修4—4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.22.(10分)已知复数,i为虚数单位.(1)求;(2)若复数z满足,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由根式内部的代数式大于等于0求得f(x)的定义域,再由在f(x)的定义域内求解x的范围得答案.【详解】由2﹣2x≥0,可得x≤1.由,得x≤2.∴函数f()的定义域为(﹣∞,2].故选:B.【点睛】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.2、C【解析】

由三视图可知,正方体的棱长为2,直三棱锥的底面是两直角边长都为2的直角三角形,高为3,由此可求得几何体的表面积.【详解】由三视图可知,正方体的棱长为2,直三棱锥的底面是两直角边长都为2的直角三角形,高为3,故该几何体的表面积为S=2×2×5+【点睛】本题主要考查三视图的还原,几何体的表面积的计算,难度一般,意在考查学生的转化能力,空间想象能力,计算能力.3、A【解析】

利用点关于直线的对称点,且A在椭圆上,得,即得椭圆C的离心率;【详解】∵点关于直线的对称点A为,且A在椭圆上,即,∴,∴椭圆C的离心率.故选A.【点睛】本题主要考查椭圆的离心率,属于基础题.4、B【解析】

按照村小A安排一个人和安排两个人两种情况分类讨论,按先分组后排序的方法,计算出不同的安排总数.【详解】村小A安排一人,则有;村小A若安排2人,则有.故共有.选B.【点睛】本小题主要考查分类加法计算原理,考查简单的排列组合计算问题,属于基础题.5、D【解析】

由,可得,从而得,解出的值即可得结果.【详解】实数满足,故,又由得:,解得:,或舍去,故,,故选D.【点睛】本题考查的知识点是指数的运算与对数的运算,意在考查灵活应用所学知识解答问题的能力,属于中档题.6、C【解析】

含有一个量词命题的否定方法:改变量词,否定结论.【详解】量词改为:,结论改为:,则,.故选:C.【点睛】本题考查含一个量词命题的否定,难度较易.含一个量词命题的否定方法:改量词,否结论.7、A【解析】试题分析:B若,则,所以错误;C.若,式子不成立.所以错误;D.若,此时式子不成立.所以错误,故选择A考点:命题真假8、A【解析】

逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与已知矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,ex>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】(1)本题主要考查命题的真假的判断,考查全称命题和特称命题的真假,考查充要条件和反证法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”的命题的证明,一般利用反证法.9、C【解析】试题分析:由题意得,由xy=1和y=x,解得交点坐标为(1,1),所以围成的封闭图形的面积S==(1考点:定积分求解曲边形的面积.10、A【解析】试题分析:,对应的点,因此是第一象限.考点:复数的四则运算.11、B【解析】

令,即可求出的值.【详解】解:在所给等式中,令,可得等式为,即.故选:B.【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.12、C【解析】

由题,得他及格的情况包含答对4题和5题,根据独立重复试验的概率公式,即可得到本题答案.【详解】由题,得他及格的情况包括答对4题和5题,所以对应的概率.故选:C【点睛】本题主要考查独立重复试验的概率问题,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)【解析】

由图象可得由图象得14、60.【解析】分析:根据二项式的展开式得到第r项为项为,常数项即r=2时,即可.详解:的展开式中的项为,则常数项即常数项为第三项,60.故答案为:60.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等。15、30【解析】

先计算小球放入3个不同的盒子的放法数目,再计算红球和蓝球放到同一个盒子的放法数目,两个相减得到结果.【详解】将4个小球放入3个不同的盒子,先在4个小球中任取2个作为1组,再将其与其它2个小球对应3个盒子,共C42A33=36种情况,若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A33=6种情况,则红球和蓝球不放到同一个盒子的放法种数为36-6=30.故答案为:30【点睛】本题考查排列组合及简单的计数原理的应用,注意用间接法,属于基础题.16、【解析】

首先根据奇函数的定义,得到,即,从而确定出函数的解析式,之后对函数求导,结合导数的几何意义,求得对应切线的斜率,应用点斜式写出直线的方程,最后整理成一般式,得到结果.【详解】因为函数是奇函数,所以,从而得到,即,所以,所以,所以切点坐标是,因为,所以,所以曲线在点处的切线方程为,故答案是.【点睛】该题考查的是有关函数图象在某点处的切线问题,涉及到的知识点有奇函数的定义,导数的几何意义,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)猜想证明见解析【解析】分析:(1)直接给n取值求出,,.(2)猜想的通项公式,并用数学归纳法证明.详解:(Ⅰ)令,则,又,解得;令,则,解得;令,则,解得.(Ⅱ)由(Ⅰ)猜想;下面用数学归纳法证明.由(Ⅰ)可知当时,成立;假设当时,,则.那么当时,,由,所以,又,所以,所以当时,.综上,.点睛:(1)本题主要考查数学归纳法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2)数学归纳法的步骤:①证明当n=1时,命题成立。②证明假设当n=k时命题成立,则当n=k+1时,命题也成立.由①②得原命题成立.18、(1);(2)见解析【解析】

(1)根据古典概型概率计算公式可求得结果;(2)分别求出一名顾客摸球中奖元和不中奖的概率;确定所有可能的取值为:,,,,,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求解期望即可.【详解】(1)记一名顾客摸球中奖元为事件从袋中摸出两只球共有:种取法;摸出的两只球均是红球共有:种取法(2)记一名顾客摸球中奖元为事件,不中奖为事件则:,由题意可知,所有可能的取值为:,,,,则;;;;随机变量的分布列为:【点睛】本题考查古典概型概率问题求解、离散型随机变量的分布列和数学期望的求解,关键是能够根据通过积事件的概率公式求解出每个随机变量的取值所对应的概率,从而可得分布列.19、(1)的普通方程为:,的直角坐标方程为:(2)的最小值为,此时的直角坐标为【解析】

(1)直接利用参数方程和极坐标方程公式得到答案.(2)最小值为点到直线的距离,,再根据三角函数求最值.【详解】(1):,化简:.:,由,,化简可得:.所以的普通方程为:,的直角坐标方程为:;(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值,即为到的距离的最小值,利用三角函数性质求得最小值.,其中,,当且仅当,时,取得最小值,最小值为,此时的直角坐标为.【点睛】本题考查了参数方程,极坐标方程,利用三角函数求最小值可以简化运算.20、(1)男用户中“喜欢骑共享单车”的概率的估计值为911,女用户中“喜欢骑共享单车”的概率的估计值为23(2)填表见解析,没有【解析】

(1)利用古典概型的概率估算男、女“喜欢骑共享单车”的概率;(2)先完成2×2列联表,再利用独立性检验判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.【详解】解:(1)由调查数据可知,男用户中“喜欢骑共享单车”的比率为4555因此男用户中“喜欢骑共享单车”的概率的估计值为911女用户中“喜欢骑共享单车”的比率为3045因此女用户中“喜欢骑共享单车”的概率的估计值为23(2)由图中表格可得2×2列联表如下:不喜欢骑共享单车喜欢骑共享单车合计男114555女153145合计2575111将2×2列联表代入公式计算得:K所以没有95%的把握认为是否“喜欢骑共享单车”与性别有关.【点睛】本题主要考查古典概型的概率的计算,考查独立性检验,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1);.(2)或.【解析】试题分析:(1)消去参数得到的普通方程为.利用可以把的极坐标方程化为直角坐标方程.(2)把的直角方程转化为参数方程,利用点到直线的距离公式算出距离为,利用得到.因为直线与椭圆是相离的,所以或,分类讨论就可以得到相应的值.解析:(1)由曲线的参数方程,消去参数,可得的普通方程为:.由曲线的极坐标方程得,∴曲线的直角坐标方程为.(2)设曲线上任意一点为,,则点到曲线的距离为.∵,∴,,当时,,即;当时,,即.∴或.点睛:一般地,如果圆锥曲线上的动点到直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论