




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.5三角形内角和定理第1课时北京师范大学出版社八年级数学上册常乐中学八年级(1)班冯洋1ABD23C如图,我们把∠A移到了∠1的位置,∠B移到了∠2的位置.就得到了三角形三个内角的和等于180°.根据前面的公理和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简捷的语言写出这一证明过程吗?与同伴交流.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.分析:延长BC到D,过点C作射线CE∥AB,这样,就相当于把∠A移到了∠1的位置,把∠B移到了∠2的位置.ABC证明:作BC的延长线CD,过点C作射线CE∥AB,则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等).又∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).你还有其他方法来证明三角形内角和定理吗?这里的CD,CE称为辅助线,辅助线通常画成虚线.ABCE213D已知:如图,△ABC.求证:∠A+∠B+∠C=180°.在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC(如图),他的想法可行吗?请你帮小明把想法化为实际行动.证明:过点A作PQ∥BC,则∠1=∠B(两直线平行,内错角相等),∠2=∠C(两直线平行,内错角相等),又∵∠1+∠2+∠3=180°(平角的定义),∴∠BAC+∠B+∠C=180°(等量代换).
小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?ABCPQ做一做231三角形内角和定理三角形内角和定理三角形三个内角的和等于1800.△ABC中,∠A+∠B+∠C=1800.∠A+∠B+∠C=1800的几种变形:∠A=1800–(∠B+∠C).∠B=1800–(∠A+∠C).∠C=1800–(∠A+∠B).∠A+∠B=1800-∠C.∠B+∠C=1800-∠A.∠A+∠C=1800-∠B.这里的结论,以后可以直接运用.
ABCACB图1BAC图2BAC图3BAC图4先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图1),然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图2)、(图3),最后得到(图4)所示的结果.验证CBA如果BC不动,把点A“拉离”BC,那么当点A越来越远离BC时,∠A就越来越小(越来越接近0°),而∠B和∠C则越来越大,它们的和越来越接近180°,当把点A拉到无穷远时,便有AB∥AC,∠B和∠C成为同旁内角,它们的和等于180°.由此你能想到什么?
读一读CBA在△ABC中,如果BC不动,把点A“压”向BC,那么当点A越来越接近BC时,∠A就越来越大(越来越接近180°),而∠B和∠C越来越小(越来越接近0°).由此你能想到什么?例:如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数。ACDB1.(昆明·中考)如图所示,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠B=60°,那么∠BDC=()A.80°B.90°C.100°D.110°2.(济宁·中考)若一个三角形三个内角度数的比为2∶3∶4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【解析】选B.由题意可设这个三角形的三个内角度数分别为2x,3x,4x,根据三角形内角和定理可得:2x+3x+4x=180°,得x=20°,因此可得三个内角度数分别为40°,60°,80°.3.(红河·中考)如图,D,E分别是AB,AC上的点,若∠A=70°,∠B=60°,DE∥BC,则∠AED的度数是____.【解析】因为∠A=70°,∠B=60°,所以∠C=50°,又因为DE//BC,所以∠AED=∠C=50°.答案:50°4.(郴州·中考)如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=___度.【解析】如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.答案:2705.如图,在△ABC中,∠A=60°,∠B=70°,∠ACB的平分线交AB于D,DE∥BC交AC于E,求∠EDC和∠BDC的度数.【解析】∵∠A=60°,∠B=70°,∴∠ACB=180°-60°-70°=50°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=25°,∵DE∥BC,∴∠EDC=∠BCD=25°.在△BCD中,∠B=70°,∠BCD=25°,∴∠BDC=180°-70°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑鸭学徒合同协议书
- 项目经理质保协议书
- DB36-T1565-2021-滩涂地中山杉造林技术规程-江西省
- 超重患者全面护理策略
- 胆囊手术护理要点与实施规范
- 医学职业道德教学课件
- 安然纳米技术应用培训体系
- 2025年亚太地区数学奥林匹克(APMO)模拟试卷(代数与几何应用技巧)
- 2025年中考物理电学试题汇编(含答案与解析)
- Python数据分析2025年春季全国二级考试重点难点试题解析
- 舜宇校招面试题目及答案
- 2025年纺羊绒纱项目可行性研究报告
- 中国重症患者肠外营养治疗临床实践专家共识(2024)解读
- 【MOOC答案】《大学篮球(四)》(华中科技大学)章节作业期末慕课答案
- 2025年FRM金融风险管理师考试专业试卷(真题)预测与解析
- 2026届新高考地理精准复习:海气相互作用
- 吉林省长春市2025届高三质量监测(四)英语试卷+答案
- 图像分割与目标检测结合的医学影像分析框架-洞察阐释
- 2024年新疆泽普县事业单位公开招聘村务工作者笔试题带答案
- 《网络素养教育》课件
- 2025年大数据分析师职业技能测试卷:数据采集与处理流程试题解析
评论
0/150
提交评论