遗传学-第十一章 细胞质遗传1_第1页
遗传学-第十一章 细胞质遗传1_第2页
遗传学-第十一章 细胞质遗传1_第3页
遗传学-第十一章 细胞质遗传1_第4页
遗传学-第十一章 细胞质遗传1_第5页
已阅读5页,还剩195页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十一章细胞质遗传第一节细胞质遗传的概念和特点一、细胞质遗传的概念遗传物质核基因组染色体细胞质基因组细胞器基因组非细胞器基因组线粒体基因组(mtDNA)叶绿体基因组(ctDNA)动粒基因组(kinoDNA)中心粒基因组(centroDNA)膜体系基因组共生体基因组(果蝇因子)附加体基因组(细菌质粒)基因(核DNA)由胞质遗传物质引起的遗传现象又称非染色体遗传非孟德尔遗传染色体外遗传核外遗传母体遗传细胞质基因组:

所有细胞器和细胞质颗粒中遗传物质的统称。一、细胞质遗传概念二、细胞质遗传的特点1.正交和反交的表现不同2.杂交后代的表型分离不符合Mendel比例;3.通过连续回交,能把母体的核基因全部置换掉,母体的细胞质基因及其控制的性状不消失;4.由附加体或共生体决定的性状,其表现类似于病毒的转导和感染;5.只能通过卵细胞传递给后代。第二节母性影响一、母性影响的概念母性影响(前定作用或延迟遗传):由核基因的产物积累在卵细胞中的物质所引起的一种遗传现象★

母性影响不属于胞质遗传范畴,有一定相似性二、母性影响的特点

下一代表现型受上一代母体基因的影响三、母性影响的遗传实例椎实螺的外壳旋转方向的遗传

椎实螺是一种♀、♂同体的软体动物,每一个体能同时产生卵子和精子,但一般通过异体受精进行繁殖。∴椎实螺即可进行异体杂交、又可单独进行个体的自体受精。

椎实螺外壳的旋转方向有左旋和右旋之分,属于一对相对性状。椎实螺正反交,F1旋转方向都与各自母本相似,即右旋或左旋,F2却都为右旋,F3才出现右旋和左旋的分离。

正交

反交♀(右旋)SS×♂(左旋)ss♀(左旋)ss×♂(右旋)SS↓异体受精↓异体受精F1全部为右旋(Ss)全为左旋(Ss)↓自体受精↓自体受精F21SS:2Ss:1ss(均右旋)1SS:2Ss:1ss(均右旋)

↓↓↓↓↓

F3右旋右旋

左旋

右旋右旋

左旋(SS)(分离)(ss)(SS)(分离)(ss)

3∶13∶1如果试验只进行到F1,很可能被误认为细胞质遗传原因:

椎实螺外壳旋转方向是由受精卵分裂时纺锤体分裂方向决定的,并由受精前的母体基因型决定。

右旋──受精卵纺锤体向中线右侧分裂;

左旋──受精卵纺锤体向中线左侧分裂。∴母体基因型受精卵纺锤体分裂方向椎实螺外壳旋转方向。四、母性影响的实质受精前母体卵细胞的状态决定了子代某些性状的表现第三节叶绿体遗传

一、叶绿体遗传的表现

(一)紫茉莉花斑性状的遗传1909年,Correns发现紫茉莉花斑植株的叶片有绿色、白色、绿白相间的花斑型,并且白色部分和绿色部分有明显的界限

Correns杂交试验杂种植株所表现的性状完全由母本枝条所决定,与提供花粉的父本枝条无关。可知控制紫茉莉花斑性状的遗传物质是通过母本传递的。细胞正常质体和白色质体细胞正常质体白色质体正常质体和白色质体随机分配绿色白色花斑花斑枝条:

绿细胞中只含有正常的绿色质体(叶绿体);

白细胞中只含无叶绿体的白色质体(白色体);

绿白组织交界区域:某些细胞内即有叶绿体、又有白色体。子代的叶绿体类型决定于种子产生于哪一种枝条,而与花粉来自于哪一种枝条无关。∴紫茉莉的花斑现象是叶绿体的前体(质体)变异而引起的。原因:二、玉米埃型条纹斑的遗传玉米细胞核内第7染色体上有一个控制白色条纹(iojap)的基因ij:★IjIj:绿色★Ijij:白、绿色相间条纹

P绿色×条纹IjIj↓ijijF1全部绿色(Ijij)↓F2

绿色(IjIj)绿色(Ijij)白化(条纹)ijij3∶1(纯合时ij核基因使胞质内的质体发生突变)3∶1表明绿色和非绿色为一对基因的差别。由隐性核基因所造成的质体变异具有不可逆的性质,质体变异一经发生,便能以细胞质遗传的方式而稳定传递。正交试验

P条纹×绿色ijij↓IjIjF1

绿色白化条纹条纹×绿色IjijIjijIjijIjijIjIj连续回交┌──┬──┬──┬──┬──┐绿色条纹白化绿色条纹白化IjIjIjIjIjIjIjijIjijIjij绿色、条纹、白化三类植株没一定的比例,在连续回交的情况下(轮回亲本为绿株),当ij基因被取代后,仍然未能发现父本对这一性状产生影响。反交试验二、叶绿体基因组

叶绿体DNA(chloroplastDNA,ctDNA)ctDNA与细菌的DNA相似,闭合双链的环状结构,裸露的DNA;每一个叶绿体内ctNDA分子数目不确定,高等植物中约30~60拷贝。ctDNA能自主复制、转录和翻译叶绿体性状同时受核DNA和ctDNA控制,在遗传上有半自主性叶绿体的半自主性:具有一套完整的复制、转录和翻译系统,但又与核基因组紧密联系第四节线粒体遗传

一、线粒体遗传的表现

(一)红色面包霉生长迟缓突变型的遗传突变型原子囊果×野生型分生孢子(缓慢生长型)(生长速度正常)↓突变型野生原子囊果×突变型分生孢子↓野生型结果分析:缓慢生长突变型在幼嫩培养阶段不含细胞色素氧化酶,且线粒体结构不正常细胞色素氧化酶的产生与线粒体直接有关可认为有关基因存在于线粒体之中,由母本传递(二)酵母小菌落的遗传酿酒酵母,属于子囊菌在正常通气情况下,每个细胞都能在培养基上产生一个圆形菌落,大部分菌落的大小相近大约有1~2%的菌落很小,是正常菌落的1/3~1/2,称为小菌落培养大菌落时经常产生少数小菌落小菌落的后代则永远是小菌落

(二)酵母小菌落的遗传二、线粒体基因组(一)线粒体DNA的分子特点环状(少数线状),裸露的DNA,单拷贝,半自主性的细胞器:100多种蛋白质,其中有10种左右是线粒体本身合成的。mtDNA与核DNA的区别:①

没有重复序列②

G/C含量高③两条单链密度不同,一条重链,一条轻链

④分子量小(二)线粒体基因组的构成

线粒体基因组大小变化较大:哺乳动物约16kb;高等植物可达100kb(如玉米的为570kbp)。

高等植物的mtDNA非常大,并且因植物种类不同而存在很大差异,二、线粒体基因组(三)线粒体内遗传信息的复制、转录和翻译系统mtDNA的复制也是半保留式的,是由线粒体的DNA聚合酶完成的。

现已查明线粒体中有100多种蛋白质,其中只有10种左右是线粒体自身合成的。线粒体上的其它蛋白质都是由核基因组编码的。综上所述,线粒体能合成与自身结构有关的一部分蛋白质,同时又依赖于核编码的蛋白质的输入。线粒体是半自主性的细胞器,它与核遗传体系处于相互依存之中。二、线粒体基因组一、雄性不育的概念在细胞质基因决定的许多性状中,与农业生产关系最密切的是植物的雄性不育性植物雄性不育的主要特征是雌雄同株的植物雄蕊发育不正常,不能产生正常花粉,但雌蕊发育正常,能接受外来花粉而受精结实雄性不育在植物界是很普遍的,迄今已在18个科的110多种植物中发现了雄性不育性的存在第六节植物雄性不育的遗传一、雄性不育的概念目前水稻、玉米、高梁、洋葱、蓖麻、甜菜和油菜等作物已经利用雄性不育性进行杂交种子的生产。此外,对小麦、大麦、珍珠粟、谷子和棉花等作物的雄性不育性已进行了广泛的研究,有的已接近用于生产。二、雄性不育的类别及其遗传特点根据雄性不育发生的遗传机制不同分为:细胞核雄性不育性细胞质雄性不育性细胞质-细胞核互作雄性不育性

质核不育型实用价值较大,如果交杂的母本具有这种不育性,就可免除人工去雄,节约人力,降低种子成本,并且可以保证种子纯度。二、雄性不育的类别及其遗传特点(一)核不育型★核雄性不育性简称核不育性,由核内基因所决定的雄性不育类型★多数核不育性受一对隐性基因(ms)控制,纯合体(msms)表现为雄性不育,这种不育性能为相对显性基因(Ms)所恢复★亦有显性基因控制的雄性不育

杂合体(Msms)后代呈简单的孟德尔式分离

msms×MsMs

↓Msms

↓MsMsMsmsmsms3∶1用普通的遗传学方法不能使整个群体均保持这种不育性。这是核不育性的一个重要特征,也是人们利用核不育性的最大障碍。★由细胞质基因控制的雄性不育类型简称质不育性,表现细胞质遗传的特征★用这种不育株作母本与可育株杂交,后代仍是不育株。★不育性能保持,但不能恢复目前已在270多种植物中发现细胞质雄性不育现象二、雄性不育的类别及其遗传特点(二)细胞质不育型由细胞质基因和细胞核基因相互作用共同控制的雄性不育类型,简称为质核互作不育性。

二、雄性不育的类别及其遗传特点(三)核质互作不育型花粉败育时间:在玉米、小麦和高梁等作物中,这种不育类型的花粉败育多数发生在减数分裂以后;在水稻、矮牵牛、胡萝卜等植物中,败育发生在减数分裂过程中或在此之前。就多数情况而言,质核不育的表现特征比核不育要复杂些。胞质不育基因为S;胞质可育基因为N核不育基因r;核可育基因R可育R_S/NrrS不育rrN可育★当胞质为不育基因S,核内必须有相对应的一对隐性基因rr,个体才能表现不育。★当胞质基因为可育基因N,即使核基因仍然是rr,个体仍是正常可育的;★当核内存在显性基因R,不论细胞质基因是S还是N,个体均表现可育

胞质与核不育基因同时存在,个体才能表现不育◆S(rr)×N(rr)→S(rr),F1表现不育,说明N(rr)具有保持不育性在世代中稳定传递的能力,因此称为保持系◆S(rr)由于能够被N(rr)所保持,从而在后代中出现全部稳定不育的个体,因此称为不育系◆S(rr)×N(RR)→S(Rr),或S(rr)×S(RR)→S(Rr),F1全部正常能育,说明N(RR)或S(RR)具有恢复育性的能力,因此称为恢复系可育不育可育可育不育三系配套三系配套由于细胞质基因和核基因的互作,既可以找到保持系而使不育性得到保持,又可以找到相应的恢复系而使育性得到恢复。若一不育系既找到了保持系,又找到了恢复系,称之为三系配套。

质核型不育性的特点1.孢子体不育和配子体不育

孢子体不育:是指花粉的育性受孢子体(即植株)基因型所控制,而与花粉本身所含基因无关。

如果孢子体基因型为rr

花粉全部败育;如果孢子体基因型为RR

花粉全部可育

如果孢子体基因型为Rr

产生的花粉中有R也有r,但均可育,自交后代分离。配子体不育:是指花粉育性直接受花粉本身的基因所决定。

配子体内核基因为R

该配子可育;

配子体内核基因为r

该配子不育。

如果孢子体为杂合基因型Rr的自交后代中,将有一半植株的花粉是不育的。S(rr)×N(RR)

↓S(Rr)

↓♀\♂ R(可育)r(不育) S(R)(可育) S(RR)后代花粉全育─S(r)(可育) S(Rr)后代一半花粉可育─

2.胞质不育基因的多样性与核育性基因的对应性

细胞质中、染色体上都有许多对应的基因座位与雄配子的育性有关同一物种内,可以有多种质核互作不育类型。由于胞质不育基因和核内不育基因的来源和性质不同,在表现型特征和恢复特性上表现出明显的差异。每一种不育类型都需要特定的恢复基因来恢复质核型不育性的特点玉米:

有38种不同来源的质核型不育性,根据对恢复性反应上的差别,大体上可分成T、S、C三组。当用不同的玉米自交系进行测定时,发现不同自交系对这三组不育型有不同程度的恢复。玉米自交系对三组雄性不育性细胞质的恢复性反应自交系名称细胞质组别性能分类TCSAyx187y-1恢复恢复恢复能恢复三组不育类型Oh43不育恢复恢复能恢复二组不育类型NyD410恢复不育不育能恢复一组不育类型Co150不育恢复不育能恢复一组不育类型Oh51A不育不育恢复能恢复一组不育类型SD10不育不育不育能保持三组不育类型3.单基因不育性和多基因不育性

核遗传型的不育性多数表现为单基因遗传质核互作不育性既有单基因控制的,又有多基因控制的质核型不育性的特点单基因不育性:指1-2对核内主基因与对应的胞质基因决定的不育性多基因不育性:指由2对以上的核基因与对应的胞质基因共同决定的不育性此时有关基因的表现型效应较弱,但具有累加效应,随着恢复基因的增加其育性上升。F2出现由育性较好到接近不育的过渡类型如小麦T型不育系和高粱的3197A就属于这种类型核质互作不育型:

不育胞质基因载于何处?

它如何与核基因相互作用导致不育?三、雄性不育性的发生机理(1)胞质不育基因的载体线粒体基因组DNA(mtDNA)是雄性不育基因的载体。不育系的线粒体亚显微结构和分子组成等与正常植株(如保持系)有所不同,由mtDNA翻译合成的蛋白质也有所不同。叶绿体DNA(ctDNA)是雄性不育基因的载体。不育系和保持系之间在叶绿体超微结构和ctDNA上存在着明显的不同,而叶绿体基因组的某些变异可以破坏叶绿体与细胞核及线粒体间的固有平衡,从而导致不育。(2)关于质核不育型的假说质核互补控制假说:不能形成淀粉酶或其它一些酶;认为胞质不育基因存在于线粒体上;当mtDNA的某个或某些节段发生变异、胞质基因由Ns时,线粒体mRNA所转录的不育性信息使某些酶不能形成,或形成某些不正常的酶,从而破坏了花粉形成的正常代谢过程最终导致花粉败育。mtDNA发生变异后

是否一定导致花粉败育,还要看核基因的状态:一般情况下,只要质核双方一方带有可育的遗传信息,无论是N或R

均能形成正常育性的花粉。

R可以补偿s的不足、N可以补偿r的不足。只有s与r共存时,由于不能互相补偿,所以表现不育。能量供求假说:

认为线粒体是胞质雄性不育的载体;植物育性与线粒体的能量转化效率有关。野生种:线粒体能量转化效率低,耗能低栽培种:线粒体能量转化效率高,耗能高二者供需平衡低供能母本、高耗能的父本的核质杂种:供<耗不育高供能母本、低耗能的父本的核质杂种:

供>耗可育亲缘假说:认为遗传结构的变异引起个体间生理生化代谢上的差异,与个体间亲缘关系的远近成正相关。远缘杂交生理代谢不平衡雄性不育恢复系:在与不育系亲缘关系近的品种中去找保持系:在与不育系亲缘关系远的品种中去找故在“三系配套”中有指导意义雄性不育性主要应用在杂种优势的利用上:目前生产上推广的主要是质核互作雄性不育性质核型不育性由于细胞质基因与核基因间的互作,故即可以找到保持系

不育性得到保持、也可找到相应的恢复系

育性得到恢复,实现三系配套。同时解决不育系繁种和杂种种子生产的问题

三、雄性不育性的利用质核互作型雄性不育性自从1973年我国学者石明松从晚粳品种农垦58中发现“湖北光敏核不育水稻”—“农垦58S”以来,核不育型的利用受到极大关注。核雄性不育性水稻三系杂种优势利用1973年,实现水稻三系配套、并成功的应用于大田生产1981年,获得国家第一个特等发明奖,以第一个农业技术专利转让美国。1991年,全国杂交稻种植面积为26083.5万亩(1738.9万公顷),增产效果明显(50~75kg/亩)。1997年,全国杂交稻种植面积为25987.5万亩(1732.5万公顷),约占水稻种植面积的62.84%,总产12236.34万吨,单产468.67公斤/亩

(7.03吨/公顷),比全国水稻平均产量增11.17%。杂交稻制种156.9万亩(10.46万公顷),制种平均产量为181.33公斤/亩(2.72吨/公顷)。我国杂种优势的利用:中国工程院院士、“杂交水稻之父”袁隆平先生油菜三系杂种优势的利用:目前我国油菜杂种优势的利用居世界首位。1972年,傅廷栋等发现“波里马”油菜细胞质雄性不育;1976年,湖南农科院首先实现“波里马”雄性不育的三系配套。1980年,李殿荣等发现“陕2A”油菜细胞质雄性不育;1983年实现“陕2A”油菜雄性不育的三系配套;油菜杂交种:秦油2号(李殿荣,1986)、华杂2号(华中农大,1992)、川油12号(四川省农科院,1992)、蜀杂1号(潘涛等,1989)、油研5号(贵州省油料作物研究所,1992)等胞质雄性不育系杂种审定、登记和推广应用1992年,我国杂种油菜种植面积已近1.33×106hm2,约占油菜总面积的20%。中国工程院院士、“波里马”细胞质雄性不育发现者傅廷栋先生MagneticResonanceImaging磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚、层距、层数、矩阵等序列常规序列自旋回波(SE),快速自旋回波(FSE)梯度回波(FE)反转恢复(IR),脂肪抑制(STIR)、水抑制(FLAIR)高级序列水成像(MRCP,MRU,MRM)血管造影(MRA,TOF2D/3D)三维成像(SPGR)弥散成像(DWI)关节运动分析是一种成像技术而非扫描序列自旋回波(SE)必扫序列图像清晰显示解剖结构目前只用于T1加权像快速自旋回波(FSE)必扫序列成像速度快多用于T2加权像梯度回波(GE)成像速度快对出血敏感T2加权像水抑制反转恢复(IR)水抑制(FLAIR)抑制自由水梗塞灶显示清晰判断病灶成份脂肪抑制反转恢复(IR)脂肪抑制(STIR)抑制脂肪信号判断病灶成分其它组织显示更清晰血管造影(MRA)无需造影剂TOF法PC法MIP投影动静脉分开显示水成像(MRCP,MRU,MRM)含水管道系统成像胆道MRCP泌尿路MRU椎管MRM主要用于诊断梗阻扩张超高空间分辨率扫描任意方位重建窄间距重建技术大大提高对小器官、小病灶的诊断能力三维梯度回波(SPGR) 早期诊断脑梗塞

弥散成像MRI的设备一、信号的产生、探测接受1.磁体(Magnet):静磁场B0(Tesla,T)→组织净磁矩M0

永磁型(permanentmagnet)常导型(resistivemagnet)超导型(superconductingmagnet)磁体屏蔽(magnetshielding)2.梯度线圈(gradientcoil):

形成X、Y、Z轴的磁场梯度功率、切换率3.射频系统(radio-frequencesystem,RF)

MR信号接收二、信号的处理和图象显示数模转换、计算机,等等;MRI技术的优势1、软组织分辨力强(判断组织特性)2、多方位成像3、流空效应(显示血管)4、无骨骼伪影5、无电离辐射,无碘过敏6、不断有新的成像技术MRI技术的禁忌证和限度1.禁忌证

体内弹片、金属异物各种金属置入:固定假牙、起搏器、血管夹、人造关节、支架等危重病人的生命监护系统、维持系统不能合作病人,早期妊娠,高热及散热障碍2.其他钙化显示相对较差空间分辨较差(体部,较同等CT)费用昂贵多数MR机检查时间较长1.病人必须去除一切金属物品,最好更衣,以免金属物被吸入磁体而影响磁场均匀度,甚或伤及病人。2.扫描过程中病人身体(皮肤)不要直接触碰磁体内壁及各种导线,防止病人灼伤。3.纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。4.病人应带耳塞,以防听力损伤。扫描注意事项颅脑MRI适应症颅内良恶性占位病变脑血管性疾病梗死、出血、动脉瘤、动静脉畸形(AVM)等颅脑外伤性疾病脑挫裂伤、外伤性颅内血肿等感染性疾病脑脓肿、化脓性脑膜炎、病毒性脑炎、结核等脱髓鞘性或变性类疾病多发性硬化(MS)等先天性畸形胼胝体发育不良、小脑扁桃体下疝畸形等脊柱和脊髓MRI适应证1.肿瘤性病变椎管类肿瘤(髓内、髓外硬膜内、硬膜外),椎骨肿瘤(转移性、原发性)2.炎症性疾病脊椎结核、骨髓炎、椎间盘感染、硬膜外脓肿、蛛网膜炎、脊髓炎等3.外伤骨折、脱位、椎间盘突出、椎管内血肿、脊髓损伤等4.脊柱退行性变和椎管狭窄症椎间盘变性、膨隆、突出、游离,各种原因椎管狭窄,术后改变,5.脊髓血管畸形和血管瘤6.脊髓脱髓鞘疾病(如MS),脊髓萎缩7.先天性畸形胸部MRI适应证呼吸系统对纵隔及肺门区病变显示良好,对肺部结构显示不如CT。胸廓入口病变及其上下比邻关系纵隔肿瘤和囊肿及其与大血管的关系其他较CT无明显优越性心脏及大血管大血管病变各类动脉瘤、腔静脉血栓等心脏及心包肿瘤,心包其他病变其他(如先心、各种心肌病等)较超声心动图无优势,应用不广腹部MRI适应证主要用于部分实质性器官的肿瘤性病变肝肿瘤性病变,提供鉴别信息胰腺肿瘤,有利小胰癌、胰岛细胞癌显示宫颈、宫体良恶性肿瘤及分期等,先天畸形肿瘤的定位(脏器上下缘附近)、分期胆道、尿路梗阻和肿瘤,MRCP,MRU直肠肿瘤骨与关节MRI适应证X线及CT的后续检查手段--钙质显示差和空间分辨力部分情况可作首选:1.累及骨髓改变的骨病(早期骨缺血性坏死,早期骨髓炎、骨髓肿瘤或侵犯骨髓的肿瘤)2.结构复杂关节的损伤(膝、髋关节)3.形状复杂部位的检查(脊柱、骨盆等)软件登录界面软件扫描界面图像浏览界面胶片打印界面报告界面报告界面2合理应用抗菌药物预防手术部位感染概述外科手术部位感染的2/3发生在切口医疗费用的增加病人满意度下降导致感染、止血和疼痛一直是外科的三大挑战,止血和疼痛目前已较好解决感染仍是外科医生面临的重大问题,处理不当,将产生严重后果外科手术部位感染占院内感染的14%~16%,仅次于呼吸道感染和泌尿道感染,居院内感染第3位严重手术部位的感染——病人的灾难,医生的梦魇

预防手术部位感染(surgicalsiteinfection,SSI)

手术部位感染的40%–60%可以预防围手术期使用抗菌药物的目的外科医生的困惑★围手术期应用抗生素是预防什么感染?★哪些情况需要抗生素预防?★怎样选择抗生素?★什么时候开始用药?★抗生素要用多长时间?定义:指发生在切口或手术深部器官或腔隙的感染分类:切口浅部感染切口深部感染器官/腔隙感染一、SSI定义和分类二、SSI诊断标准——切口浅部感染

指术后30天内发生、仅累及皮肤及皮下组织的感染,并至少具备下述情况之一者:

1.切口浅层有脓性分泌物

2.切口浅层分泌物培养出细菌

3.具有下列症状体征之一:红热,肿胀,疼痛或压痛,因而医师将切口开放者(如培养阴性则不算感染)

4.由外科医师诊断为切口浅部SSI

注意:缝线脓点及戳孔周围感染不列为手术部位感染二、SSI诊断标准——切口深部感染

指术后30天内(如有人工植入物则为术后1年内)发生、累及切口深部筋膜及肌层的感染,并至少具备下述情况之一者:

1.切口深部流出脓液

2.切口深部自行裂开或由医师主动打开,且具备下列症状体征之一:①体温>38℃;②局部疼痛或压痛

3.临床或经手术或病理组织学或影像学诊断,发现切口深部有脓肿

4.外科医师诊断为切口深部感染

注意:感染同时累及切口浅部及深部者,应列为深部感染

二、SSI诊断标准—器官/腔隙感染

指术后30天内(如有人工植入物★则术后1年内)、发生在手术曾涉及部位的器官或腔隙的感染,通过手术打开或其他手术处理,并至少具备以下情况之一者:

1.放置于器官/腔隙的引流管有脓性引流物

2.器官/腔隙的液体或组织培养有致病菌

3.经手术或病理组织学或影像学诊断器官/腔隙有脓肿

4.外科医师诊断为器官/腔隙感染

★人工植入物:指人工心脏瓣膜、人工血管、人工关节等二、SSI诊断标准—器官/腔隙感染

不同种类手术部位的器官/腔隙感染有:

腹部:腹腔内感染(腹膜炎,腹腔脓肿)生殖道:子宫内膜炎、盆腔炎、盆腔脓肿血管:静脉或动脉感染三、SSI的发生率美国1986年~1996年593344例手术中,发生SSI15523次,占2.62%英国1997年~2001年152所医院报告在74734例手术中,发生SSI3151例,占4.22%中国?SSI占院内感染的14~16%,仅次于呼吸道感染和泌尿道感染三、SSI的发生率SSI与部位:非腹部手术为2%~5%腹部手术可高达20%SSI与病人:入住ICU的机会增加60%再次入院的机会是未感染者的5倍SSI与切口类型:清洁伤口 1%~2%清洁有植入物 <5%可染伤口<10%手术类别手术数SSI数感染率(%)小肠手术6466610.2大肠手术7116919.7子宫切除术71271722.4肝、胆管、胰手术1201512.5胆囊切除术8222.4不同种类手术的SSI发生率:三、SSI的发生率手术类别SSI数SSI类别(%)切口浅部切口深部器官/腔隙小肠手术6652.335.412.3大肠手术69158.426.315.3子宫切除术17278.813.57.6骨折开放复位12379.712.28.1不同种类手术的SSI类别:三、SSI的发生率延迟愈合疝内脏膨出脓肿,瘘形成。需要进一步处理这里感染将导致:延迟愈合疝内脏膨出脓肿、瘘形成需进一步处理四、SSI的后果四、SSI的后果在一些重大手术,器官/腔隙感染可占到1/3。SSI病人死亡的77%与感染有关,其中90%是器官/腔隙严重感染

——InfectControlandHospEpidemiol,1999,20(40:247-280SSI的死亡率是未感染者的2倍五、导致SSI的危险因素(1)病人因素:高龄、营养不良、糖尿病、肥胖、吸烟、其他部位有感染灶、已有细菌定植、免疫低下、低氧血症五、导致SSI的危险因素(2)术前因素:术前住院时间过长用剃刀剃毛、剃毛过早手术野卫生状况差(术前未很好沐浴)对有指征者未用抗生素预防五、导致SSI的危险因素(3)手术因素:手术时间长、术中发生明显污染置入人工材料、组织创伤大止血不彻底、局部积血积液存在死腔和/或失活组织留置引流术中低血压、大量输血刷手不彻底、消毒液使用不当器械敷料灭菌不彻底等手术特定时间是指在大量同种手术中处于第75百分位的手术持续时间其因手术种类不同而存在差异超过T越多,SSI机会越大五、导致SSI的危险因素(4)SSI危险指数(美国国家医院感染监测系统制定):病人术前已有≥3种危险因素污染或污秽的手术切口手术持续时间超过该类手术的特定时间(T)

(或一般手术>2h)六、预防SSI干预方法根据指南使用预防性抗菌药物正确脱毛方法缩短术前住院时间维持手术患者的正常体温血糖控制氧疗抗菌素的预防/治疗预防

在污染细菌接触宿主手术部位前给药治疗

在污染细菌接触宿主手术部位后给药

防患于未然六、预防SSI干预方法

——抗菌药物的应用125预防和治疗性抗菌素使用目的:清洁手术:防止可能的外源污染可染手术:减少粘膜定植细菌的数量污染手术:清除已经污染宿主的细菌六、预防SSI干预方法

——抗菌药物的应用126需植入假体,心脏手术、神外手术、血管外科手术等六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素使用指征:可染伤口(Clean-contaminatedwound)污染伤口(Contaminatedwound)清洁伤口(Cleanwound)但存在感染风险六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素显示有效的手术有:妇产科手术胃肠道手术(包括阑尾炎)口咽部手术腹部和肢体血管手术心脏手术骨科假体植入术开颅手术某些“清洁”手术六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用

理想的给药时间?目前还没有明确的证据表明最佳的给药时机研究显示:切皮前45~75min给药,SSI发生率最低,且不建议在切皮前30min内给药影响给药时间的因素:所选药物的代谢动力学特性手术中污染发生的可能时间病人的循环动力学状态止血带的使用剖宫产细菌在手术伤口接种后的生长动力学

手术过程

012345671hr2hrs6hrs1day3-5days细菌数logCFU/ml六、预防SSI干预方法

——抗菌药物的应用132术后给药,细菌在手术伤口接种的生长动力学无改变

手术过程抗生素血肿血浆六、预防SSI干预方法

——抗菌药物的应用Antibioticsinclot

手术过程

血浆中抗生素予以抗生素血块中抗生素血浆术前给药,可以有效抑制细菌在手术伤口的生长六、预防SSI干预方法

——抗菌药物的应用134ClassenDC,etal..NEnglJMed1992;326:281切开前时间切开后时间予以抗生素切开六、预防SSI干预方法

——抗菌药物的应用不同给药时间,手术伤口的感染率不同NEJM1992;326:281-6投药时间感染数(%)相对危险度(95%CI)早期(切皮前2-24h)36914(3.8%)6.7(2.9-14.7)4.3手术前(切皮前45-75min)170810(0.9%)1.0围手术期(切皮后3h内)2824(1.4%)2.4(0.9-7.9) 2.1手术后(切皮3h以上)48816(3.3%)5.8(2.6-12.3)

5.8全部284744(1.5%)似然比病人数六、预防SSI干预方法

——抗菌药物的应用结论:抗生素在切皮前45-75min或麻醉诱导开始时给药,预防SSI效果好136六、预防SSI干预方法

——抗菌药物的应用切口切开后,局部抗生素分布将受阻必须在切口切开前给药!!!抗菌素应在切皮前45~75min给药六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?有效安全杀菌剂半衰期长相对窄谱廉价六、预防SSI干预方法

——抗菌药物的应用抗生素的选择原则:各类手术最易引起SSI的病原菌及预防用药选择六、预防SSI干预方法

——抗菌药物的应用

手术最可能的病原菌预防用药选择胆道手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢哌酮或

(如脆弱类杆菌)头孢曲松阑尾手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢噻肟;

(如脆弱类杆菌)+甲硝唑结、直肠手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢曲松或

(如脆弱类杆菌)头孢噻肟;+甲硝唑泌尿外科手术革兰阴性杆菌头孢呋辛;环丙沙星妇产科手术革兰阴性杆菌,肠球菌头孢呋辛或头孢曲松或

B族链球菌,厌氧菌头孢噻肟;+甲硝唑莫西沙星(可单药应用)注:各种手术切口感染都可能由葡萄球菌引起六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用单次给药还是多次给药?没有证据显示多次给药比单次给药好伤口关闭后给药没有益处多数指南建议24小时内停药没有必要维持抗菌素治疗直到撤除尿管和引流管手术时间延长或术中出血量较大时可重复给药细菌污染定植感染一次性用药用药24h用药4872h数小时从十数小时到数十小时六、预防SSI干预方法

——抗菌药物的应用用药时机不同,用药期限也应不同短时间预防性应用抗生素的优点:六、预防SSI干预方法

——抗菌药物的应用减少毒副作用不易产生耐药菌株不易引起微生态紊乱减轻病人负担可以选用单价较高但效果较好的抗生素减少护理工作量药品消耗增加抗菌素相关并发症增加耐药抗菌素种类增加易引起脆弱芽孢杆菌肠炎MRSA(耐甲氧西林金黄色葡萄球菌)定植六、预防SSI干预方法

——抗菌药物的应用延长抗菌素使用的缺点:六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?正确的给药方法:六、预防SSI干预方法

——抗菌药物的应用应静脉给药,2030min滴完肌注、口服存在吸收上的个体差异,不能保证血液和组织的药物浓度,不宜采用常用的-内酰胺类抗生素半衰期为12h,若手术超过34h,应给第2个剂量,必要时还可用第3次可能有损伤肠管的手术,术前用抗菌药物准备肠道局部抗生素冲洗创腔或伤口无确切预防效果,不予提倡不应将日常全身性应用的抗生素应用于伤口局部(诱发高耐药)必要时可用新霉素、杆菌肽等抗生素缓释系统(PMMA—青大霉素骨水泥或胶原海绵)局部应用可能有一定益处六、预防SSI干预方法

——抗菌药物的应用不提倡局部预防应用抗生素:时机不当时间太长选药不当,缺乏针对性六、预防SSI干预方法

——抗菌药物的应用预防用药易犯的错误:在开刀前45-75min之内投药按最新临床指南选药术后24小时内停药择期手术后一般无须继续使用抗生素大量对比研究证明,手术后继续用药数次或数天并不能降低手术后感染率若病人有明显感染高危因素或使用人工植入物,可再用1次或数次小结预防SSI干预方法

——正确的脱毛方法用脱毛剂、术前即刻备皮可有效减少SSI的发生手术部位脱毛方法与切口感染率的关系:备皮方法 剃毛备皮 5.6%

脱毛0.6%备皮时间 术前24小时前 >20%

术前24小时内 7.1%

术前即刻 3.1%方法/时间 术前即刻剪毛 1.8%

前1晚剪/剃毛 4.0%THANKYOUMagneticResonanceImagingPART01磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间PART02MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论