




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《计算电磁学》PartII:矩量法Dr.PingDU(杜平)SchoolofElectronicScienceandAppliedPhysics,HefeiUniversityofTechnologyE-mail:pdu@Chapter2ElectrostaticFields(静电场)
Dec.5,2011《计算电磁学》PartII:矩量法Dr.PingDUOutline§2.1OperatorFormulation(算子描述)§2.2ChargedConductingPlate(含电荷的导电平板)2Outline§2.1OperatorFormulati§2.1OperatorFormulationThestaticelectricintensityEisconvenientlyfoundfromanelectrostaticpotential,whichis
(2-1)wheredenotesthegradientoperator.Inaregionofconstantpermittivityandvolumechargedensity,theelectrostaticpotentialsatisfies(2-2)istheLaplacianoperator(拉普拉斯算子).3§2.1OperatorFormulationTheForuniquesolution,theboundaryconditionsonareneeded.Inotherwords,thedomainoftheoperatormustbespecified.Fornow,considerfieldsfromchargesinunboundedspace,inwhichcaseconstantas(2-3)whereristhedistancefromthecoordinateorigin(坐标原点),foreveryoffiniteextent.Thedifferentialoperatorformulationis(2-4)where(2-5)4Foruniquesolution,theboundThedomainofListhosefunctionswhoseLaplacianexistsandhaveboundedatinfinityaccordingto(2-3).Thesolutiontothisproblemis(2-6)whereisthedistancebetweenthesourcepoint()andthefieldpoint().Hence,theinverseoperatortoLis(2-7)Notethat(2-7)isinverseto(2-5)onlyforboundaryconditions(2-3).Iftheboundaryconditionsarechanged,changes.5ThedomainofListhoseAsuitableinnerproductforelectrostaticproblems(constant)isThat(2-8)satisfiestherequiredpostulates(1-2),(1-3)and(1-4)iseasilyverified.(2-8)wheretheintegrationisoverallspace.LetusanalyzethepropertiesoftheoperatorL.Forthis,formtheleftsideof(1-5),(2-9)where6AsuitableinnerproductforeGreen’sidentityis(2-10)whereSisthesurfaceboundingthevolumeVandnisoutwarddirectionnormaltoS.LetSbeasphereofradiusr,sothatinthelimitthevolumeVincludesallspace.Forandsatisfyingboundaryconditions(2-3),andas.Henceas.Similarlyfor.Sinceincreasesonlyas,therightsideof(2-10)vanishesas.Equation(2-10)thenreducesto(2-11)7Green’sidentityis(2-10)wherItisevidentthattheadjointoperatoris(2-12)SincethedomainofisthatofL,theoperatorLisself-adjoint(自伴的).Themathematicalconceptofself-adjointnessinthiscaseisrelatedtothephysicalconceptofreciprocity.Itisevidentfrom(2-5)and(2-7)thatLandarerealoperators.Theyarealsopositivedefinitebecausetheysatisfy(1-6).ForL,form(2-13)andusethevectoridentityplusthedivergenceTheorem(散度定理).8ItisevidentthattheadjointTheresultis(2-14)whereSboundsV.AgaintakeSasphereofradiusr.Forsatisfying(2-3),thelasttermof(2-14)vanishesas.Then(2-15)and,forrealand,Lispositivedefinite.Inthiscase,positivedefinitenessofLisrelatedtotheconceptofelectrostaticenergy(静电能).9Theresultis(2-14)whereSbo§2.2ChargedConductingPlate(含电荷的导电平板)Considerasquareconducting2ameteronasideandlyingontheplanewithcenterattheoriginasshowninFig.2-1.Fig.2-1.Squareconductingplateandsubsections10§2.2ChargedConductingPlateLetrepresentthesurfacechargedensityontheplate.Here,weassumethatthethicknessiszero.Theelectrostaticpotentialatanypointinspaceis(2-16)whereTheboundaryconditionis(constant)ontheplate.Theintegralequationfortheproblemis(2-17)11Letrepresenttwhere,.Theunknowntobedeterminedisthechargedensity.Aparameterofinterestisthecapacitanceoftheplate(2-18)whichisacontinuouslinearfunctionalof.Letusfirstgothroughasimplesubsectionandpoint-matchingsolution,andlaterinterpretitintermsofmoregeneralconcepts.ConsidertheplatedividedintoNsquaresubsections,asshowninFig.2-1.Definebasisfunctions(2-19)12where,Thusthechargedensitycanberepresentedby(2-20)Substituting(2-20)in(2-17),andsatisfyingtheresultantequationatthemid-pointofeach,weobtainthesetofequations(2-21)where(2-22)13ThusthechargedensitycanbeNotethatisthepotentialatthecenterofduetoauniformchargedensityofunitamplitudeover.Asolutiontotheset(2-21)givestheintermsofwhichthechargedensityisapproximatedby(2-20).Thecorrespondingcapacitanceoftheplate,approximating(2-18),is(2-23)Totranslatetheaboveresultsintothelanguageoflinearspacesandthemethodofmoments(MoM),let14Notethatisthepote(2-24),(2-25)(2-26)Thenisequivalentto(2-17).Asuitableinnerproduct,satisfying(1-2)to(1-4),forwhichLisself-adjoint,is(2-27)Wechoosethefunctions(2-19)asasubsectionalbasis.15(2-24),(2-25)(2-26)ThenThetestingfunctionsaredefinedas(2-28)Thisisthetwo-dimensionalDiracdeltafunction.Theelementsofthe[l]matrix(1-25)arethoseof(2-22),andthe[g]matrixof(1-26)is(2-29)Thematrixequationequation(1-24)isidenticaltothesetofequations(2-21).16ThetestingfunctionsaredefiIntermsoftheinnerproduct(2-27),thecapacitance(2-18)canbewrittenFornumericalresults,theof(2-22)mustbeevaluated.Letdenotethesidelengthofeach.The
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物营养师社会责任考题试题及答案
- 大学古代文学史考试技巧试题及答案
- 通过实践掌握2024年统计学考试试题及答案
- 运动的心得体会作文参考5篇
- 健康饮食理念在宠物营养中的应用试题及答案
- DB15T 3525-2024麻叶荨麻种子生产技术规程
- DB15T 1349-2024西瓜生产技术规程
- 睡眠自测试题及答案
- 样本选择对结果的影响试题及答案
- 浙江纺织面试题目及答案
- 老旧小区基础设施环境改造工程各项施工准备方案
- 《线控底盘技术》2024年课程标准(含课程思政设计)
- 养老院老人康复理疗师考核奖惩制度
- 三年级下册两位数乘两位数竖式计算练习200题有答案
- (完整版)暗涵清淤专项方案
- 大玻璃吊装方案
- 中等职业学校西餐烹饪专业教学标准(试行)
- 会下金蛋的鹅课件
- 甘肃省普通高校专升本计算机考试21
- 2024天津中考数学二轮重难题型专题训练 题型七 第24题平面直角坐标系下的图形变化 (含答案)
- 烟草证转让协议共
评论
0/150
提交评论