版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习目的和要求:1、了解数控车床的结构以及种类2、正确分析数控机床加工零件的工艺性3、掌握数控车床加工工艺的制订4、学会填写数控加工工艺文件第5章数控车削加工工艺5.1数控车削加工工艺概述第5章数控车削加工工艺本章主要内容如下:5.3典型零件数控车削加工工艺分析实例5.2数控车削加工工艺的制订5.1数控车削加工工艺概述5.1.1数控车床的类型1.按数控系统的功能和机械结构的档次分(1)经济型数控车床:一般采用步进电动机驱动的开环控制系统,结构简单,价格低廉,一般只能进行两个平动坐标(刀架的移动)的控制和联动。(2)全功能型数控车床:采用闭环或半闭环控制的伺服系统,可以进行多个坐标轴的控制。具有高刚度、高精度和高效率等特点。(3)车削中心:车削中心是一种复合加工机床,工件在一次装夹后,它不但能完成对回转型面的加工,还能完成回转零件上个各表面加工,如圆柱面或端面上铣槽或平面等。
(4)
FMC车床:由数控车床、机器人等构成的柔性加工单元。
经济型数控车床全功能型数控车床车削中心主轴的C轴功能
FCM车床
2.按主轴的配置形式分类:(1)卧式数控车床
:主轴轴线处于水平位置的数控车床。(双轴卧式数控车床)(2)立式数控车床:主轴轴线处于垂直位置的数控车床。(双轴立式数控车床)3.按数控系统控制的轴数分类:(1)两轴控制的数控车床:机床上只有一个回转刀架或两个排刀架,多采用水平导轨,可实现两坐标轴控制。(2)四轴控制的数控车床:机床上有两个独立的回转刀架,多采用斜置导轨,可实现四坐标轴控制。5.1.2数控车床的结构与主要性能参数1数控车床的组成(1)车床主机即数控车床的机械部件,主要包括床身、主轴箱、刀架、尾座、进给传动机构等。(2)数控系统即控制系统,是数控车床的控制核心,其中包括CPU、存储器、CRT等部分。(3)驱动系统即伺服系统,是数控车床切削工作的动力部分,主要实现主运动和进给运动。(4)辅助装置是为加工服务的配套部分,如液压、气动装置,冷却、照明、润滑、防护和排屑装置。MJ-50数控车床的外观图允许最大工件回转直径500mm主轴转速范围35~3500r/min(连续无级)安装刀具数10把主轴AC伺服电动机连续/30min超载11/15kW机床外形尺寸(长×宽×高)2995mm×1667mm×1796mm2.床身和导轨的布局
数控车床的布局形式3.刀架的布局数控车床的刀架分为回转式和排刀式刀架两大类。排刀式刀架主要用于小型数控车床,适用于短轴或套类零件的加工。回转式刀架是普遍采用的刀架形式,它通过回转头的旋转、分度、定位来实现机床的自动换刀工作。排刀式刀架回转式刀架
4.数控车床的用途数控车床自动完成内外圆柱面、圆锥面、圆弧面、端面、螺纹等工序的切削加工,并能进行切槽、钻孔、镗孔、扩孔、铰孔等加工。此外,数控车床还特别适合加工形状复杂、精度要求高的轴类或盘类零件。车床加工的典型表面
5.2数控车削加工工艺的制订5.2.1数控车床的主要工对象
1.精度要求高的回转体零件2.表面粗糙度要求高的回转体零件
3.表面形状复杂的回转体零件
4.带特殊螺纹的回转体零件
轴承内圈示意图成型内腔零件示例
5.2.2数控车削加工零件的工艺性分析1.零件图样分析
(1)尺寸标注方法分析
由于数控加工精度及重复定位精度都很高,不会因产生较大的积累误差而破坏使用特性,因此可将局部的尺寸分散标注法改为以集中引注或坐标式的尺寸标注法。
(2)零件轮廓的几何要素分析
要分析几何元素的给定条件是否充分、正确。(3)精度及技术要求分析①分析精度及各项技术要求是否齐全、是否合理。对采用数控加工的表面,其精度要求应尽量一致,以便最后能一刀连续加工。
②分析本工序的数控车削加工精度能否达到图纸要求,若达不到,需采用其他措施(如磨削)弥补的话,注意给后续工序留有余量。
③找出图样上有较高位置精度要求的表面,这些表面应在一次安装下完成。
④对表面粗糙度要求较高的表面,应确定用恒线速切削。
2.零件结构工艺性分析几何要素缺陷示例一几何要素缺陷示例二结构工艺性示例
5.2.3工序的划分在批量生产中,常用下列两种方法进行工序的划分:
1.按零件加工表面划分工序将位置精度要求较高的表面安排在一次安装下完成,以免多次安装所产生的安装误差影响位置精度。适用于加工内容不多的零件。2.按粗、精加工划分工序以粗加工中完成的那一部分工艺过程为一道工序,精加工中完成的那一部分工艺过程为一道工序。这法适用于零件加工后易变形或精度要求较高的零件。轴承内圈精车加工方案
【例】加工如下图所示手柄零件,该零件加工所用坯料为φ32mm,批量生产,加工时用一台数控车床。试进行工序的划分及确定装夹方式。实例分析
(如图所示将一批工件全部车出,包括切断),夹棒料外圆柱面,工序内容有:车出φ12mm和φ20mm两圆柱面→圆锥面(粗车掉R42mm圆弧的部分余量)→转刀后按总长要求留下加工余量切断。工序1(见下图),用φ12㎜外圆和φ20㎜端面装夹,工序内容有:车削包络SR7㎜球面的30°圆锥面→对全部圆弧表面半精车(留少量的精车余量)→换精车刀将全部圆弧表面一刀精车成形。工序25.2.4加工顺序的安排1.先粗后精对于粗精加工在一道工序内进行的,先对各表面进行粗加工,全部粗加工结束后在进行半精加工和精加工,逐步提高加工精度。2.先近后远在一般情况下,离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。3.内外交叉
对既有内表面(内型、腔),又有外表面需加工的回转体零件,安排加工顺序时,应先进行外、内表面粗加工,后进行外、内表面精加工。4.基面先行
用作精基准的表面应优先加工出来,因为定位基准的表面越精确,装夹误差就越小。先粗后精先近后远
5.2.5进给路线的确定1.最短的空行程路线
(1)巧用起刀点
。(2)巧设换(转)刀点
。(3)合理安排“回零”路线。(执行“回零”(即返回对刀点)指令)2.粗加工(或半精加工)进给路线(1)常用的粗加工进给路线。(2)大余量毛坯的阶梯切削进给路线。(3)双向切削进给路线。3.精加工进给路线
(1)完工轮廓的连续切削进给路线。
(2)各部位精度要求不一致的精加工进给路线。4.特殊的进给路线。
在数控车削加工中,一般情况下,Z坐标轴方向的进给路线都是沿着坐标的负方向进给的,但有时按这种常规方式安排进给路线并不合理,甚至可能车坏工件。巧用起刀点a)将起刀点与对刀点重合在一起:第一刀为A→B→C→D→A;
第二刀为A→E→F→G→A;第三刀为A→H→I→J→A。b)巧将起刀点与对刀点分离:起刀点与对刀点分离的空行程为A→B;第一刀为B→C→D→E→B;第二刀为B→F→G→H→B;第三刀为B→I→J→K→B。常用的粗加工循环进给路线图a为利用数控系统具有的矩形循环功能而安排的“矩形”循环进给路线。图b为利用数控系统具有的三角形循环功能而安排的“三角形”循环进给路线。
图c为利用数控系统具有的封闭式复合循环功能控制车刀沿工件轮廓等距线循环的进给路线。
a)错误的阶梯切削路线b)正确的阶梯切削路线大余量毛坯的阶梯切削进给路线顺工件轮廓双向进给的路线
两种不同的进给方法
嵌刀现象合理的进给方案
5.2.6夹具的选择1.圆周定位夹具
(1)三爪自定心卡盘:能自动定心,夹持范围大,一般不需找正,装夹速度较快。但夹紧力小,卡盘磨损后会降低定心精度。
(2)软爪:软爪是在使用前配合被加工工件特别制造的,如加工成圆弧面、圆锥面或螺纹等形式,可获得理想的夹持精度。(3)弹簧夹套:弹簧夹套定心精度高,装夹工件快捷方便,常用于精加工的外圆表面定位.。弹簧夹套夹持工件的内孔是标准系列,并非任意直径。
(4)四爪单动卡盘:四爪单动卡盘夹紧力较大,所以适用于大型或形状不规则的工件。但四爪单动卡盘找正比较费时,只能用于单件小批生产。2.中心孔定位夹具
(1)两顶尖拨盘:两顶尖(活顶尖、死顶尖)装夹工件方便,不需找正,装夹精度高。(2)拨动顶尖:拨动顶尖有内、外拨动顶尖和端面顶尖两种。3.复杂、异形、精密工件的装夹
(1)花盘:加工表面的回转轴线与基准面垂直、外形复杂的零件可以装夹在花盘上加工。(2)角铁:加工表面的回转轴线与基准面平行、外形复杂的零件可以装夹在角铁上加工。
三爪卡盘示意图加工软爪
a)四爪单动卡盘b)四爪单动卡盘装夹工件1-卡爪2-螺杆3-木板两顶尖装夹工件两顶尖车偏心轴
a)普通顶尖b)活顶尖1-平衡铁2-轴承座3-角铁4-划针盘5-压板1-连杆2-圆形压板3-压板4-V形架5-花盘会【实例1】在角铁、花盘上装夹工件【实例2】薄壁工件装夹和夹具选择1.
薄壁工件加工分析防止和减少薄壁工件变形,采用以下装夹方法及其夹具:增加装夹接触面应采用轴向夹紧夹具增加工艺肋5.2.7刀具的选择(1)尖形车刀
以直线形切削刃为特征的车刀一般称为尖形车刀。这类车刀的刀尖(同时也为其刀位点)由直线形的主、副切削刃构成.(2)圆弧形车刀
构成主切削刃的刀刃形状为一圆度误差或线轮廓误差很小的圆弧,该圆弧刃每一点都是圆弧形车刀的刀尖。因此,刀位点不在圆弧上,而在该圆弧的圆心上。(3)成型车刀
成型车刀俗称样板车刀,其加工零件的轮廓形状完全由车刀刀刃的形状和尺寸决定。1.常用车刀种类和用途常用车刀的种类、形状和用途
1-切断刀2-90°左偏刀3-90°右偏刀4-弯头车刀5-直头车刀6-成型车刀7-宽刃精车刀8-外螺纹车刀9-端面车刀10-内螺纹车刀11-内槽车刀12-通孔车刀13-盲孔车刀2.可转位刀片的标记
12345678—910式中每一位字符串代表刀片某种参数的意义:1——刀片的几何形状及其夹角。2——刀片主切削刃后角(法后角)。3——公差表示刀片内接圆d与厚度s的精度级别。4——刀片形状、固定方式或断屑槽。5——刀片边长、切削刃长。6——刀片厚度。7——修光刀刀尖圆角半径r或主偏角κr或修光刃后角αn。8——切削刃状态尖角切削刃或倒棱切削刃。9——进刀方向或倒刃宽度。10——各刀具公司的补充符号或倒刃角度。【例】车刀可转位刀片:SNGM160612ER—A3型号表示含义。S—35°菱形刀片;N—法后角为0°;G—刀尖位置尺寸允差(±0.025mm),刀片厚度允差(±0.13mm),内接圆公称直径允差(±0.025mm);M—一面有断屑槽,有中心定位孔;16—切削刃长;06—刀片厚度;12—刀尖圆角半径1.2mm;E—倒圆刀刃;R—右手刀;A3—A型断屑槽,断屑槽宽3.2~3.5mm。常见可转位车刀刀片
5.2.8切削用量的选择1.确定背吃刀量ap(㎜)
背吃刀量ap相当于加工余量,应以最少的进给次数切除这一加工余量,最好一次切净余量,以提高生产效率。为了保证加工精度和表面粗糙度,一般都留有一定的精加工余量,其大小可小于普通加工的精加工余量,一般半精车余量为0.5㎜左右,精车余量为0.1~0.5㎜。2.确定主轴转速n(r/min)(1)光车时主轴转速
光车时主轴转速应根据零件上被加工部位的直径,并按零件和刀具的材料及加工性质等条件所允许的切削速度vc(m/min)来确定。切削速度除了计算和查表选取外,还可根据实践经验确定。切削速度确定之后,用下式计算主轴转速:
式中n————工件或刀具的转速,r/min;vc————切削速度,m/min;
d————切削刃选定点处所对应的工件或刀具的回转直径,mm。(2)车螺纹时主轴转速
对于不同的数控系统,推荐不同的主轴转速选择范围。如大多数普通型车床数控系统推荐车螺纹时的主轴转速如下:
式中n——主轴转速,r/min;P——工件螺纹的螺距或导程,mm;k——保险系数,一般取为80。3.确定进给速度vf(mm/min)
进给速度的大小直接影响表面粗糙度的值和车削效率,因此进给速度的确定应在保证表面质量的前提下,选择较高的进给速度。进给速度包括纵向进给速度和横向进给速度。一般根据零件的表面粗糙度、刀具及工件材料等因素,查阅切削用量手册选取每转进给量f,再按下式计算进给速度:vf=fn式中f——每转进给量,mm/r。
式中每转进给量f,粗车时一般选取为0.3~0.8mm/r,精车时常取0.1~0.3mm/r,切断时常取0.05~0.2mm/r。5.2.9数控车床对刀对刀一般分为手动对刀和自动对刀两大类。车刀对刀点示意图(a)X方向对刀;(b)Z方向对刀;(c)两把刀X方向对刀;(d)两把刀Z方向对刀5.3典型零件的数控车削加工工艺实例
5.3.1轴类零件数控车削加工工艺
下面以下图所示螺纹特形轴为例,介绍数控车削加工工艺。所用机床为TND360数控车床,其数控车削加工工艺分析如下:
典型轴类零件简图
1.零件图工艺分析
采取以下几点工艺措施:(1)对图样上给定的几个精度(IT7~IT8)要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。(2)在轮廓曲线上,有三处为过象限圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。(3)为便于装夹,坯件左端应预先车出夹持部分(双点划线部分),右端面也应先粗车出并钻好中心孔。毛坯选Φ60mm棒料。2.确定装夹方案
确定坯件轴线和左端大端面(设计基准)为定位基准。左端采用三爪自定心卡盘定心夹紧、右端采用活动顶尖支承的装夹方式。3.确定加工顺序及进给路线加工顺序按由粗到精、由近到远(由右到左)的原则确定。即先从右到左进行粗车(留0.25mm精车余量),然后从右到左进行精车,最后车削螺纹。精车轮廓进给路线
4.刀具选择(1)选用Φ5mm中心钻钻削中心孔。(2)粗车及平端面选用90°硬质合金右偏刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选K’r=35°。(3)为减少刀具数量和换刀次数,精车和车螺纹选用硬质合金60°外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=0.15~0.2mm。数控加工刀具卡片
产品名称或代号数控车工艺分析实例零件名称典型轴零件图号Lathe-01序号刀具号刀具规格名称数量加工表面刀具半径/mm备注123T01T02T03φ5中心孔硬质合金90°外圆车刀硬质合金60°外螺纹车刀111钻φ5mm中心孔车端面及粗车轮廓精车轮廓及螺纹0.15右偏刀编制×××审核×××批准×××共1页第1页5.切削用量的选择
(1)背吃刀量的选择轮廓粗车循环时选ap=3mm,精车ap=0.25mm;螺纹粗车循环时选ap=0.4mm,精车ap=0.1mm。
(2)主轴转速的选择车直线和圆弧时,查表选粗车切削速度vc=90m/min、精车切削速度vc=120m/min,然后利用式(5—1)计算主轴转速(粗车工件直径D=60mm,精车工件直径取平均值):粗车500r/min、精车1200r/min。车螺纹时,利用式(5—2)计算主轴转速n=320r/min。
(3)进给速度的选择先查表选择粗车、精车每转进给量分别为0.4mm/r和0.15mm/r,再根据式(5—3)计算粗车、精车进给速度分别为200mm/min和180mm/min。将前面分析的各项内容综合成数控加工工艺卡片。数控加工工序卡
单位名称×××××产品名称或代号零件名称零件图号数控车工艺分析实例典型轴Lathe-01工序号001程序编号Latheprg-01夹具名称三爪卡盘和活动顶尖使用设备TND360车间数控中心工步号工步内容刀具号刀具规格/mm主轴转速/r·min-1进给速度/mm·min-1背吃刀量/mm备注123456平端面钻中心孔粗车轮廓精车轮廓粗车螺纹精车螺纹T02T01T02T03T03T0325×25φ525×2525×2525×2525×255009505001200320320
200180960960
30.250.40.1手动手动自动自动自动自动编制×××审核×××批准×××年月日共1页第1页5.3.2轴套类零件数控车削加工工艺下面以下图所示的锥孔螺母套零件为例,介绍数控车削加工工艺。单件小批量生产,所用机床为CJK6240。螺母套零件图该零件表面由内外圆柱面、圆锥面、顺圆弧、逆圆弧及内螺纹等表面组成,其中多个直径尺寸与轴向尺寸有较高的尺寸精度、表面粗糙度和形位公差要求。零件图尺寸标注完整,符合数控加工尺寸标注要求;轮廓描述清楚完整;零件材料为45钢,切削加工性能较好,无热处理和硬度要求。通过上述分析,采取以下几点工艺措施。①零件图样上带公差的尺寸,除内螺纹退刀槽尺寸25公差值较大,编程时可取平均值24.958外,其他尺寸因公差值较小,故编程时不必取其平均值,而取基本尺寸即可。②左右端面均为多个尺寸的设计基准,相应工序加工前,应该先将左右端面车出来。③内孔圆锥面加工完后,需掉头再加工内螺纹。1.零件工艺分析内孔加工时以外圆定位,用三爪自动定心卡盘夹紧。加工外轮廓时,为保证同轴度要求和便于装夹,以坯件左端面和轴心线为定位基准,为此需要设计一心轴装置,用三爪卡盘夹持心轴左端,心轴右端留有中心孔并用尾座顶尖顶紧以提高工艺系统的刚性。外轮廓车削心轴定位装夹方案
2.确定装夹方案加工顺序的确定按由内到外、由粗到精、由远到近的原则确定,在一次装夹中尽可能加工出较多的工件表面。结合本零件的结构特征,可先粗、精加工内孔各表面,然后粗、精加工外轮廓表面。由于该零件为单件小批量生产,走刀路线设计不必考虑最短进给路线或最短空行程路线,外轮廓表面车削走刀路线可沿零件轮廓顺序进行。外轮廓车削走刀路线
3.确定加工顺序及走刀路线①车削端面选用45°硬质合金端面车刀;②φ4中心钻,钻中心孔以利于钻削底孔时刀具找正;③φ31.5高速钢钻头,钻内孔底孔;④粗镗内孔选用内孔镗刀;⑤内孔精加工选用φ32铰刀;⑥螺纹退刀槽加工选用5mm内槽车刀;⑦内螺纹切削选用60°内螺纹车刀;⑧选用93°硬质合金右偏刀,副偏角选35°,自右到左车削外圆表面;⑨选用93°硬质合金左偏刀,副偏角选35°,自左到右车削外圆表面;将所选定的刀具参数填入数控加工刀具卡片中,以便于编程和操作管理。4.刀具选择根据被加工表面质量要求、刀具材料和工件材料,参考切削用量手册或有关资料选取切削速度与每转进给量,然后根据公式计算主轴转速与进给速度(计算过程略),计算结果填入工序卡中。背吃刀量的选择因粗、精加工而有所不同。粗加工时,在工艺系统刚性和机床功率允许的情况下,尽可能取较大的背吃刀量,以减少进给次数;精加工时,为保证零件表面粗糙度要求,背吃刀量一般取0.1~0.4mm较为合适。5.确定切削用量6.填写工艺文件
(1)按加工顺序将各工步的加工内容、所用刀具及切削用量等填人数控加工工序卡片中。(2)将选定的各工步所用刀具的刀具型号、刀片型号、刀片牌号及刀尖圆弧半径等填人数控加工刀具卡片中。(3)将各工步的进给路线绘成文件形式的进给路线图。上述二卡一图是编制该轴套零件本工序数控车削加工程序的主要依据。
数控加工工序卡片
(单位名称)数控加工工序卡片工序号程序编号
产品名称或代号零件名称材料零件图号数控车工艺分析实例锥孔螺母套45钢
夹具编号使用设备车间CJK6240数控中心工步号工步内容刀具号刀具规格/mm1平端面T0125×252钻中心孔T02φ43钻孔T03φ32.54镗通孔至尺寸φ31.9mmT0420×205铰孔至尺寸φ32T05φ326粗镗内孔斜面T0420×20主轴转速/(r/min)进给速度/(mm·min-1)背吃刀量/mm备注320
1手动950
2手动200
15.75手动320400.2自动32
0.1手动320400.8自动7精镗内孔斜面保证(1:5)±6′T0420×208粗车外圆至尺寸φ71mm光轴T0825×259掉头车另一端面,保证长度尺寸76mmT0125×2510粗镗螺纹底孔至尺寸φ34mmT0420×2011精镗螺纹底孔至尺寸φ34.2mmT0420×2012切5mm内孔退刀槽T0616×1613
φ34.2mm孔边倒角2×45°T0716×1614粗车内孔螺纹T0716×1615精车内孔螺纹至M36×2-7HT0716×1616自右至左车外表面T0825×2517自左至右车外表面T0925×25320400.2自动320
1手动320
自动320400.5自动320250.1自动320
手动320
手动320
0.4自动320
0.1自动320300.2自动320300.2自动编制
审核
批准
共1页第1页
数控加工刀具卡片
产品名称或代号数控车工艺分析实例零件名称锥孔螺母套零件图号
程序编号
工步号刀具号刀具规格名称数量加工表面刀尖半径/mm备注1T0145°硬质合金端面车刀1车端面0.5
2T02φ4中心钻1钻φ4mm中心孔
3T03φ31.5mm的钻头1钻孔
4T04镗刀1镗孔及镗内孔锥面0.4
5T05φ32mm的铰刀1铰孔
6T06内槽车刀1切5mm宽螺纹退刀槽0.4
7T07内螺纹车刀1车内螺纹及螺纹孔倒角0.3
8T0893°右手偏刀1自右至左车外表面0.2
9T0993°左手偏刀1自左至右车外表面0.2
编制
审核
批准
共1页第1页小结本章主要介绍了以下内容:数控车床的组成、布局、刀架形式、用途和分类,MJ—50型数控车床的传动系统;适合数控机床的加工对象和加工零件的工艺性分析方法;数控车床加工工艺路线的制订;典型零件的数控车削加工工艺分析实例。重点要求能正确分析数控加工零件的工艺性;掌握数控车床加工工艺路线的制订,即确定加工方案、划分加工阶段、划分工序、确定进给路线、选择夹具、选择刀具、确定切削用量、填写工艺文件等。课堂思考题:请仔细观看下列加工视频,试说明其走刀路线有何特点?分析实例结束MagneticResonanceImaging磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像
Mallard1980磁共振装置商品化1989
0.15T永磁商用磁共振设备中国安科
2003诺贝尔奖金LauterburMansfierd时间MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等
人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量
三、弛豫(Relaxation)回复“自由”的过程
1.
纵向弛豫(T1弛豫):
M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫
吸收RF光子能量(共振)低能态1H高能态1H
放出能量(光子,MRS)T1弛豫时间:
MZ恢复到M0的2/3所需的时间
T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像
所谓的加权就是“突出”的意思
T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别
T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。
磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围
在同一个驰豫过程中,T2比T1短得多
如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件
RF=ω=γB02.梯度磁场Z(GZ)
GZ→B0→ω
不同频率的RF
特定层面1H激励、共振
3.层厚的影响因素
RF的带宽↓
GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码
M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω
各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换
GZ----某一层面产生MXYGX----MXY旋进频率不同
GY----MXY旋进相位不同(不影响MXY大小)
↓某一层面不同的体素,有不同频率、相位
MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚、层距、层数、矩阵等序列常规序列自旋回波(SE),快速自旋回波(FSE)梯度回波(FE)反转恢复(IR),脂肪抑制(STIR)、水抑制(FLAIR)高级序列水成像(MRCP,MRU,MRM)血管造影(MRA,TOF2D/3D)三维成像(SPGR)弥散成像(DWI)关节运动分析是一种成像技术而非扫描序列自旋回波(SE)必扫序列图像清晰显示解剖结构目前只用于T1加权像快速自旋回波(FSE)必扫序列成像速度快多用于T2加权像梯度回波(GE)成像速度快对出血敏感T2加权像水抑制反转恢复(IR)水抑制(FLAIR)抑制自由水梗塞灶显示清晰判断病灶成份脂肪抑制反转恢复(IR)脂肪抑制(STIR)抑制脂肪信号判断病灶成分其它组织显示更清晰血管造影(MRA)无需造影剂TOF法PC法MIP投影动静脉分开显示水成像(MRCP,MRU,MRM)含水管道系统成像胆道MRCP泌尿路MRU椎管MRM主要用于诊断梗阻扩张超高空间分辨率扫描任意方位重建窄间距重建技术大大提高对小器官、小病灶的诊断能力三维梯度回波(SPGR) 早期诊断脑梗塞
弥散成像MRI的设备一、信号的产生、探测接受1.磁体(Magnet):静磁场B0(Tesla,T)→组织净磁矩M0
永磁型(permanentmagnet)常导型(resistivemagnet)超导型(superconductingmagnet)磁体屏蔽(magnetshielding)2.梯度线圈(gradientcoil):
形成X、Y、Z轴的磁场梯度功率、切换率3.射频系统(radio-frequencesystem,RF)
MR信号接收二、信号的处理和图象显示数模转换、计算机,等等;MRI技术的优势1、软组织分辨力强(判断组织特性)2、多方位成像3、流空效应(显示血管)4、无骨骼伪影5、无电离辐射,无碘过敏6、不断有新的成像技术MRI技术的禁忌证和限度1.禁忌证
体内弹片、金属异物各种金属置入:固定假牙、起搏器、血管夹、人造关节、支架等危重病人的生命监护系统、维持系统不能合作病人,早期妊娠,高热及散热障碍2.其他钙化显示相对较差空间分辨较差(体部,较同等CT)费用昂贵多数MR机检查时间较长1.病人必须去除一切金属物品,最好更衣,以免金属物被吸入磁体而影响磁场均匀度,甚或伤及病人。2.扫描过程中病人身体(皮肤)不要直接触碰磁体内壁及各种导线,防止病人灼伤。3.纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。4.病人应带耳塞,以防听力损伤。扫描注意事项颅脑MRI适应症颅内良恶性占位病变脑血管性疾病梗死、出血、动脉瘤、动静脉畸形(AVM)等颅脑外伤性疾病脑挫裂伤、外伤性颅内血肿等感染性疾病脑脓肿、化脓性脑膜炎、病毒性脑炎、结核等脱髓鞘性或变性类疾病多发性硬化(MS)等先天性畸形胼胝体发育不良、小脑扁桃体下疝畸形等脊柱和脊髓MRI适应证1.肿瘤性病变椎管类肿瘤(髓内、髓外硬膜内、硬膜外),椎骨肿瘤(转移性、原发性)2.炎症性疾病脊椎结核、骨髓炎、椎间盘感染、硬膜外脓肿、蛛网膜炎、脊髓炎等3.外伤骨折、脱位、椎间盘突出、椎管内血肿、脊髓损伤等4.脊柱退行性变和椎管狭窄症椎间盘变性、膨隆、突出、游离,各种原因椎管狭窄,术后改变,5.脊髓血管畸形和血管瘤6.脊髓脱髓鞘疾病(如MS),脊髓萎缩7.先天性畸形胸部MRI适应证呼吸系统对纵隔及肺门区病变显示良好,对肺部结构显示不如CT。胸廓入口病变及其上下比邻关系纵隔肿瘤和囊肿及其与大血管的关系其他较CT无明显优越性心脏及大血管大血管病变各类动脉瘤、腔静脉血栓等心脏及心包肿瘤,心包其他病变其他(如先心、各种心肌病等)较超声心动图无优势,应用不广腹部MRI适应证主要用于部分实质性器官的肿瘤性病变肝肿瘤性病变,提供鉴别信息胰腺肿瘤,有利小胰癌、胰岛细胞癌显示宫颈、宫体良恶性肿瘤及分期等,先天畸形肿瘤的定位(脏器上下缘附近)、分期胆道、尿路梗阻和肿瘤,MRCP,MRU直肠肿瘤骨与关节MRI适应证X线及CT的后续检查手段--钙质显示差和空间分辨力部分情况可作首选:1.累及骨髓改变的骨病(早期骨缺血性坏死,早期骨髓炎、骨髓肿瘤或侵犯骨髓的肿瘤)2.结构复杂关节的损伤(膝、髋关节)3.形状复杂部位的检查(脊柱、骨盆等)软件登录界面软件扫描界面图像浏览界面胶片打印界面报告界面报告界面2合理应用抗菌药物预防手术部位感染概述外科手术部位感染的2/3发生在切口医疗费用的增加病人满意度下降导致感染、止血和疼痛一直是外科的三大挑战,止血和疼痛目前已较好解决感染仍是外科医生面临的重大问题,处理不当,将产生严重后果外科手术部位感染占院内感染的14%~16%,仅次于呼吸道感染和泌尿道感染,居院内感染第3位严重手术部位的感染——病人的灾难,医生的梦魇
预防手术部位感染(surgicalsiteinfection,SSI)
手术部位感染的40%–60%可以预防围手术期使用抗菌药物的目的外科医生的困惑★围手术期应用抗生素是预防什么感染?★哪些情况需要抗生素预防?★怎样选择抗生素?★什么时候开始用药?★抗生素要用多长时间?定义:指发生在切口或手术深部器官或腔隙的感染分类:切口浅部感染切口深部感染器官/腔隙感染一、SSI定义和分类二、SSI诊断标准——切口浅部感染
指术后30天内发生、仅累及皮肤及皮下组织的感染,并至少具备下述情况之一者:
1.切口浅层有脓性分泌物
2.切口浅层分泌物培养出细菌
3.具有下列症状体征之一:红热,肿胀,疼痛或压痛,因而医师将切口开放者(如培养阴性则不算感染)
4.由外科医师诊断为切口浅部SSI
注意:缝线脓点及戳孔周围感染不列为手术部位感染二、SSI诊断标准——切口深部感染
指术后30天内(如有人工植入物则为术后1年内)发生、累及切口深部筋膜及肌层的感染,并至少具备下述情况之一者:
1.切口深部流出脓液
2.切口深部自行裂开或由医师主动打开,且具备下列症状体征之一:①体温>38℃;②局部疼痛或压痛
3.临床或经手术或病理组织学或影像学诊断,发现切口深部有脓肿
4.外科医师诊断为切口深部感染
注意:感染同时累及切口浅部及深部者,应列为深部感染
二、SSI诊断标准—器官/腔隙感染
指术后30天内(如有人工植入物★则术后1年内)、发生在手术曾涉及部位的器官或腔隙的感染,通过手术打开或其他手术处理,并至少具备以下情况之一者:
1.放置于器官/腔隙的引流管有脓性引流物
2.器官/腔隙的液体或组织培养有致病菌
3.经手术或病理组织学或影像学诊断器官/腔隙有脓肿
4.外科医师诊断为器官/腔隙感染
★人工植入物:指人工心脏瓣膜、人工血管、人工关节等二、SSI诊断标准—器官/腔隙感染
不同种类手术部位的器官/腔隙感染有:
腹部:腹腔内感染(腹膜炎,腹腔脓肿)生殖道:子宫内膜炎、盆腔炎、盆腔脓肿血管:静脉或动脉感染三、SSI的发生率美国1986年~1996年593344例手术中,发生SSI15523次,占2.62%英国1997年~2001年152所医院报告在74734例手术中,发生SSI3151例,占4.22%中国?SSI占院内感染的14~16%,仅次于呼吸道感染和泌尿道感染三、SSI的发生率SSI与部位:非腹部手术为2%~5%腹部手术可高达20%SSI与病人:入住ICU的机会增加60%再次入院的机会是未感染者的5倍SSI与切口类型:清洁伤口 1%~2%清洁有植入物 <5%可染伤口<10%手术类别手术数SSI数感染率(%)小肠手术6466610.2大肠手术7116919.7子宫切除术71271722.4肝、胆管、胰手术1201512.5胆囊切除术8222.4不同种类手术的SSI发生率:三、SSI的发生率手术类别SSI数SSI类别(%)切口浅部切口深部器官/腔隙小肠手术6652.335.412.3大肠手术69158.426.315.3子宫切除术17278.813.57.6骨折开放复位12379.712.28.1不同种类手术的SSI类别:三、SSI的发生率延迟愈合疝内脏膨出脓肿,瘘形成。需要进一步处理这里感染将导致:延迟愈合疝内脏膨出脓肿、瘘形成需进一步处理四、SSI的后果四、SSI的后果在一些重大手术,器官/腔隙感染可占到1/3。SSI病人死亡的77%与感染有关,其中90%是器官/腔隙严重感染
——InfectControlandHospEpidemiol,1999,20(40:247-280SSI的死亡率是未感染者的2倍五、导致SSI的危险因素(1)病人因素:高龄、营养不良、糖尿病、肥胖、吸烟、其他部位有感染灶、已有细菌定植、免疫低下、低氧血症五、导致SSI的危险因素(2)术前因素:术前住院时间过长用剃刀剃毛、剃毛过早手术野卫生状况差(术前未很好沐浴)对有指征者未用抗生素预防五、导致SSI的危险因素(3)手术因素:手术时间长、术中发生明显污染置入人工材料、组织创伤大止血不彻底、局部积血积液存在死腔和/或失活组织留置引流术中低血压、大量输血刷手不彻底、消毒液使用不当器械敷料灭菌不彻底等手术特定时间是指在大量同种手术中处于第75百分位的手术持续时间其因手术种类不同而存在差异超过T越多,SSI机会越大五、导致SSI的危险因素(4)SSI危险指数(美国国家医院感染监测系统制定):病人术前已有≥3种危险因素污染或污秽的手术切口手术持续时间超过该类手术的特定时间(T)
(或一般手术>2h)六、预防SSI干预方法根据指南使用预防性抗菌药物正确脱毛方法缩短术前住院时间维持手术患者的正常体温血糖控制氧疗抗菌素的预防/治疗预防
在污染细菌接触宿主手术部位前给药治疗
在污染细菌接触宿主手术部位后给药
防患于未然六、预防SSI干预方法
——抗菌药物的应用138预防和治疗性抗菌素使用目的:清洁手术:防止可能的外源污染可染手术:减少粘膜定植细菌的数量污染手术:清除已经污染宿主的细菌六、预防SSI干预方法
——抗菌药物的应用139需植入假体,心脏手术、神外手术、血管外科手术等六、预防SSI干预方法
——抗菌药物的应用预防性抗菌素使用指征:可染伤口(Clean-contaminatedwound)污染伤口(Contaminatedwound)清洁伤口(Cleanwound)但存在感染风险六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法
——抗菌药物的应用预防性抗菌素显示有效的手术有:妇产科手术胃肠道手术(包括阑尾炎)口咽部手术腹部和肢体血管手术心脏手术骨科假体植入术开颅手术某些“清洁”手术六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法
——抗菌药物的应用
理想的给药时间?目前还没有明确的证据表明最佳的给药时机研究显示:切皮前45~75min给药,SSI发生率最低,且不建议在切皮前30min内给药影响给药时间的因素:所选药物的代谢动力学特性手术中污染发生的可能时间病人的循环动力学状态止血带的使用剖宫产细菌在手术伤口接种后的生长动力学
手术过程
012345671hr2hrs6hrs1day3-5days细菌数logCFU/ml六、预防SSI干预方法
——抗菌药物的应用145术后给药,细菌在手术伤口接种的生长动力学无改变
手术过程抗生素血肿血浆六、预防SSI干预方法
——抗菌药物的应用Antibioticsinclot
手术过程
血浆中抗生素予以抗生素血块中抗生素血浆术前给药,可以有效抑制细菌在手术伤口的生长六、预防SSI干预方法
——抗菌药物的应用147ClassenDC,etal..NEnglJMed1992;326:281切开前时间切开后时间予以抗生素切开六、预防SSI干预方法
——抗菌药物的应用不同给药时间,手术伤口的感染率不同NEJM1992;326:281-6投药时间感染数(%)相对危险度(95%CI)早期(切皮前2-24h)36914(3.8%)6.7(2.9-14.7)4.3手术前(切皮前45-75min)170810(0.9%)1.0围手术期(切皮后3h内)2824(1.4%)2.4(0.9-7.9) 2.1手术后(切皮3h以上)48816(3.3%)5.8(2.6-12.3)
5.8全部284744(1.5%)似然比病人数六、预防SSI干预方法
——抗菌药物的应用结论:抗生素在切皮前45-75min或麻醉诱导开始时给药,预防SSI效果好149六、预防SSI干预方法
——抗菌药物的应用切口切开后,局部抗生素分布将受阻必须在切口切开前给药!!!抗菌素应在切皮前45~75min给药六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?有效安全杀菌剂半衰期长相对窄谱廉价六、预防SSI干预方法
——抗菌药物的应用抗生素的选择原则:各类手术最易引起SSI的病原菌及预防用药选择六、预防SSI干预方法
——抗菌药物的应用
手术最可能的病原菌预防用药选择胆道手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢哌酮或
(如脆弱类杆菌)头孢曲松阑尾手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢噻肟;
(如脆弱类杆菌)+甲硝唑结、直肠手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢曲松或
(如脆弱类杆菌)头孢噻肟;+甲硝唑泌尿外科手术革兰阴性杆菌头孢呋辛;环丙沙星妇产科手术革兰阴性杆菌,肠球菌头孢呋辛或头孢曲松或
B族链球菌,厌氧菌头孢噻肟;+甲硝唑莫西沙星(可单药应用)注:各种手术切口感染都可能由葡萄球菌引起六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法
——抗菌药物的应用单次给药还是多次给药?没有证据显示多次给药比单次给药好伤口关闭后给药没有益处多数指南建议24小时内停药没有必要维持抗菌素治疗直到撤除尿管和引流管手术时间延长或术中出血量较大时可重复给药细菌污染定植感染一次性用药用药24h用药4872h数小时从十数小时到数十小时六、预防SSI干预方法
——抗菌药物的应用用药时机不同,用药期限也应不同短时间预防性应用抗生素的优点:六、预防SSI干预方法
——抗菌药物的应用减少毒副作用不易产生耐药菌株不易引起微生态紊乱减轻病人负担可以选用单价较高但效果较好的抗生素减少护理工作量药品消耗增加抗菌素相关并发症增加耐药抗菌素种类增加易引起脆弱芽孢杆菌肠炎MRSA(耐甲氧西林金黄色葡萄球菌)定植六、预防SSI干预方法
——抗菌药物的应用延长抗菌素使用的缺点:六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?正确的给药方法:六、预防SSI干预方法
——抗菌药物的应用应静脉给药,2030min滴完肌注、口服存在吸收上的个体差异,不能保证血液和组织的药物浓度,不宜采用常用的-内酰胺类抗生素半衰期为12h,若手术超过34h,应给第2个剂量,必要时还可用第3次可能有损伤肠管的手术,术前用抗菌药物准备肠道局部抗生素冲洗创腔或伤口无确切预防效果,不予提倡不应将日常全身性应用的抗生素应用于伤口局部(诱发高耐药)必要时可用新霉素、杆菌肽等抗生素缓释系统(PMMA—青大霉素骨水泥或胶原海绵)局部应用可能有一定益处六、预防SSI干预方法
——抗菌药物的应用不提倡局部预防应用抗生素:时机不当时间太长选药不当,缺乏针对性六、预防SSI干预方法
——抗菌药物的应用预防用药易犯的错误:在开刀前45-75min之内投药按最新临床指南选药术后24小时内停药择期手术后一般无须继续使用抗生素大量对比研究证明,手术后继续用药数次或数天并不能降低手术后感染率若病人有明显感染高危因素或使用人工植入物,可再用1次或数次小结预防SSI干预方法
——正确的脱毛方法用脱毛剂、术前即刻备皮可有效减少SSI的发生手术部位脱毛方法与切口感染率的关系:备皮方法 剃毛备皮 5.6%
脱毛0.6%备皮时间 术前24小时前 >20%
术前24小时内 7.1%
术前即刻 3.1%方法/时间 术前即刻剪毛 1.8%
前1晚剪/剃毛 4.0%THANKYOUMagneticResonanceImagingPART01磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像
Mallard1980磁共振装置商品化1989
0.15T永磁商用磁共振设备中国安科
2003诺贝尔奖金LauterburMansfierd时间PART02MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等
人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量
三、弛豫(Relaxation)回复“自由”的过程
1.
纵向弛豫(T1弛豫):
M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫
吸收RF光子能量(共振)低能态1H高能态1H
放出能量(光子,MRS)T1弛豫时间:
MZ恢复到M0的2/3所需的时间
T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像
所谓的加权就是“突出”的意思
T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别
T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。
磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围
在同一个驰豫过程中,T2比T1短得多
如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件
RF=ω=γB02.梯度磁场Z(GZ)
GZ→B0→ω
不同频率的RF
特定层面1H激励、共振
3.层厚的影响因素
RF的带宽↓
GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码
M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω
各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换
GZ----某一层面产生MXYGX----M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 集成电路产业园及配套设施建设项目可行性研究报告-集成电路产业体现出快速增长的趋势
- 2024-2025学年高中语文第三单元随笔杂文第10课短文三篇学案新人教版必修4
- 广告铺墙出租合同范例
- 发电机保养合同范例
- 承包林场转让合同范例
- 建筑塔吊机械购销合同模板
- 单位弱电维护合同范例
- 合同模板 床架
- 房屋赠与儿媳合同范例
- 学校聘用合同范例 英文
- 2022 年第一次广东省普通高中学业水平合格性考试(春考)语文试卷
- 8.第十四章-口腔医疗保健中的感染与控制
- 国际贸易理论与实务智慧树知到答案章节测试2023年山东外贸职业学院
- 实施卓越绩效管理《自我评价报告》
- 粒子物理基础
- 珠宝首饰制作倒模工艺流程
- 2023年象山县特殊教育岗位教师招聘考试笔试题库及答案解析
- YY/T 1760-2021一次性使用腹膜透析引流器
- GB/T 41365-2022中药材种子(种苗)白术
- GB/T 34570.1-2017电动工具用可充电电池包和充电器的安全第1部分:电池包的安全
- GB/T 12527-2008额定电压1 kV及以下架空绝缘电缆
评论
0/150
提交评论