第4章 数字PID控制算法1_第1页
第4章 数字PID控制算法1_第2页
第4章 数字PID控制算法1_第3页
第4章 数字PID控制算法1_第4页
第4章 数字PID控制算法1_第5页
已阅读5页,还剩191页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4章常规及复杂控制技术内容提要概述准连续PID控制算法对标准PID算法的改进PID调节器的参数选择小结§4.1数字控制器的连续化设计技术

控制算法是智能化测量控制仪表的一个重要组成部分,整个仪表的控制功能主要由控制算法实现。比例(P)、积分(I)、微分(D)控制是过程控制中应用最广泛的一种控制规律。一、PID概述1.PID三作用的控制概念PID调节器是一种线性调节器,其作用是将给定值w(t)于实际输出值y(t)之差e(t)作为控制器的输入,控制器按偏差的P、PI、PID形成控制量。即:e(t)=w(t)-y(t)按偏差的比例、积分和微分进行控制的调节器简称为PID(Proportional-Integral-Differential)调节器。PID调节是连续系统中技术最成熟、应用最广泛的一种调节方式,其调节的实质是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,其运算结果用于输出控制。在实际应用中,根据具体情况,可以灵活地改变PID的结构,取其一部分进行控制。§4.1数字控制器的连续化设计技术2.PID调节器的优点

★技术成熟★易被人们熟悉和掌握

★不需要建立数学模型

★控制效果好§4.1数字控制器的连续化设计技术3.PID控制实现的方式

◆模拟方式:用电子电路调节器实现。在调节器中,将被测信号与给定值比较,然后把比较出的差值经PID电路运算后送到执行机构,改变进给量,达到调节之目的。

◆数字方式:用计算机进行PID运算,将计算结果转换成模拟量,输出去控制执行机构。4.PID的控制作用

(1)比例控制器§4.1数字控制器的连续化设计技术

其中:u—控制器的输出KP—比例系数e(t)—调节器输入偏差u0—控制量的基准,e(t)=0时控制器的输出§4.1数字控制器的连续化设计技术u(t)比例作用的特点:迅速反应误差,控制及时;但不能消除稳态误差(静差),比例系数Kp过大容易引起不稳定。其控制作用的强弱取决于Kp的大小。(2)比例积分(PI)调节器其中:—积分时间常数

积分时间Ti越大,则积分速度越慢,积分作用越弱。减小Ti可以减小超调,提高稳定性。积分作用特点:消除静差,但容易引起超调,甚至出现振荡。§4.1数字控制器的连续化设计技术u(t)u(t)(3)比例微分(PD)调节器其中:—微分时间常数微分作用特点:减小超调,克服振荡,提高稳定性,改善系统动态特性。§4.1数字控制器的连续化设计技术u(t)u(t)积分作用虽然可以消除静差,但是却降低了响应速度。为了加快控制过程,有必要在e(t)出现或变化的瞬间,不仅对e(t)做出及时反应(比例环节的作用),而且还要对偏差量的变化做出反应,或者说按偏差变化的趋向进行控制,使偏差消失在萌芽状态。有了微分控制环节后,即使偏差很小,只要出现变化的趋势,便马上产生一种控制作用,以调整系统的输出,阻止偏差的变化,故微分控制器被称为“超前”控制作用。而且e(t)变化越快,Ud(t)越大,反馈校正量就越大。§4.1数字控制器的连续化设计技术(4)比例积分微分(PID)调节器§4.1数字控制器的连续化设计技术u(t)二、数字PID控制算法

-用数值逼近的方法实现PID控制规律;-数值逼近的方法:用求和代替积分、用后向差分代替微分,使模拟PID离散化为差分方程;-两种形式:位置式、增量式。

由于计算机控制是一种采样控制,它只根据采样时刻的e(t)值来计算控制量u(t),因而模拟PID式子中的积分项和微分项不能直接使用,需进行离散化处理,用数值的方法来逼近。§4.1数字控制器的连续化设计技术1.位置式PID控制算法位置式控制算法提供执行机构的位置uk,需要累计ek§4.1数字控制器的连续化设计技术位置式控制算法的缺点:

(1)前一次的输出uk与过去的状态ek-1有关;(2)计算时要对ek进行累积,计算机运算工作量大;(3)由于计算机输出的uk对应的是执行机构的实际位置,如果计算机出现了故障,则uk的大幅度变化会引起执行机构位置的大幅度变化,这或许会造成重大生产事故。§4.1数字控制器的连续化设计技术2.增量式PID控制算法§4.1数字控制器的连续化设计技术增量式控制算法提供执行机构的增量△uk

,只需要保持现时以前3个时刻的偏差值即可。位置式与增量式PID控制算法的比较(书P86):★增量式算法不需做累加,计算误差和计算精度问题对控制量的计算影响较小;位置式算法要用到过去偏差的累加值,容易产生较大的累计误差。★控制从手动切换到自动时,位置式算法必须先将计算机的输出值置为原始值u0时,才能保证无冲击切换;增量式算法与原始值无关,易于实现手动到自动的无冲击切换。★在实际应用中,应根据被控对象的实际情况加以选择。一般认为,在以闸管或伺服电机作为执行器件,或对控制精度要求较高的系统中,应当采用位置式算法;而在以步进电机或多圈电位器作执行器件的系统中,则应采用增量式算法。

§4.1数字控制器的连续化设计技术§4.1数字控制器的连续化设计技术3.程序设计(1)位置式PID控制算法的程序设计—思路:

将三项拆开,并应用递推进行编程

比例输出:积分输出:微分输出:§4.1数字控制器的连续化设计技术(2)增量式PID控制算法的程序设计

初始化时,需首先置入调节参数q0,q1,q2和设定值w,并设置误差初值ei=

ei–1=ei–2=0

三、数字PID控制器的改进1.积分饱和作用及其抑制

(1)积分饱和:如果执行机构已到极限位置,仍然不能消除偏差,由于积分的作用,尽管计算PID差分方程式所得的运算结果继续增大或减小,但执行结构已无相应的动作,控制信号则进入深度饱和区。

◆影响:饱和引起输出超调,甚至产生震荡,使系统不稳定。

(2)改进方法:遇限削弱积分法、积分分离法、有限偏差法。§4.1数字控制器的连续化设计技术◆遇限削弱积分法—基本思想:一旦控制量进入饱和区,则停止进行增大积分的运算。数字PID控制器的改进◆积分分离法

—思路:当被控量和给定值偏差大时,取消积分控制,以免超调量过大;当被控量和给定值接近时,积分控制投入,消除静差。§4.1数字控制器的连续化设计技术◆有效偏差法—思路:当算出的控制量超出限制范围时,将相应的这一控制量的偏差值作为有效偏差值进行积分,而不是将实际偏差值进行积分。数字PID控制器的改进2.比例及微分饱和作用及其抑制◆对于增量式PID算法,由于执行机构本身是存储元件,在算法中没有积分累积,所以不容易产生积分饱和现象,但可能出现比例和微分饱和现象,其表现形式不是超调,而是减慢动态过程。§4.1数字控制器的连续化设计技术◆纠正比例和微分饱和的办法之一是采用积累补偿法,其基本思想是将那些因饱和而未能执行的增量信息积累起来,一旦可能时,再补充执行。数字PID控制器的改进◆纠正比例和微分饱和的另一种办法是采用不完全微分,即将过大的控制输出分几次执行,以避免出现饱和现象。§4.1数字控制器的连续化设计技术干扰的抑制

从系统硬件及环境方面采取措施

在控制算法上采取措施

数字滤波方法

修改微分项

数字PID控制器的改进

数字滤波方法

通过一定的计算或判断程序减少干扰在有用信号中的比重,也即是一种程序滤波或软件滤波

优点

—用程序实现的,不需要增加硬设备,所以可靠性高,稳定性好

—可以对频率很低(如0.01Hz)的信号实现滤波

—可根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便、功能强的特点

§4.1数字控制器的连续化设计技术★

程序判断滤波

—方法:根据生产经验,确定出相邻两次采样信号之间可能出现的最大偏差。若超过此偏差,则表明该信号是干扰信号,应该去掉;如小于此偏差,则将该信号作为本次的采样值—作用:用于滤掉由于大功率设备的启停所造成的电流尖峰干扰或误检测,以及变送器不稳定而引起的严重失真等—程序判断滤波分为限幅滤波和限速滤波两种数字PID控制器的改进(1)限幅滤波若|Y(k)-Y(k-1)|≤⊿Y,则(k)=Y(k),取本次采样值若|Y(k)-Y(k-1)|>⊿Y,则Y(k)=Y(k-1),取上次采样值(2)限速滤波

设顺序采样所得到的数据分别为Y(1)、Y(2)、Y(3)当|Y(2)-Y(1)|≤⊿Y时,采用Y(2)当|Y(2)-Y(1)|>⊿Y时,不采用Y(2),但保留,继续采样取得Y(3)当|Y(3)-Y(2)|≤⊿Y时,采用Y(3)当|Y(2)-Y(1)|>⊿Y时,取(Y(3)+Y(2))/2为采样值§4.1数字控制器的连续化设计技术★

中值滤波—方法:将被测参数连续采样N次(一般N为奇数),然后把采样值按大小顺序排列,再取中间值作为本次的采样值—作用:中值滤波能有效地去除偶然因素引起的波动,采样开关或A/D转换器等工作不稳定造成的脉冲干扰,对变化缓慢的被测参数有较好的滤波效果,但不适合快速变化的过程参数数字PID控制器的改进★

算术平均滤波—方法:在一个采样期内,对信号x的N次测量值进行算术平均,作为时刻k的输出,即—作用:适用于一般的具有随机干扰信号的滤波,特别适合于信号本身在某一数值范围附近作上下波动的情况,如流量、液位等信号的测量,但不适用脉冲性干扰较严重的场合§4.1数字控制器的连续化设计技术★

加权平均滤波

—为了提高滤波效果,将各采样值取不同的比例,然后再相加,此方法称为加权平均值法,即:—加权平均滤波适用于系统纯滞后时间较大而采样周期较短的过程并且数字PID控制器的改进★

滑动平均值滤波

—算术平均滤波和加权平均滤波由于采样N次,需要的时间较长,故检测速度慢,滑动平均值滤波可以克服这个缺点

—依次存放N次采样值,每采进一个新数据,就将最早采集的那个数据丢掉,然后求包含新值在内的N个数据的算术平均值或加权平均值§4.1数字控制器的连续化设计技术★

惯性滤波—仿照模拟滤波器,用数字形式实现低通滤波一阶RC滤波器的传递函数为离散化后整理为

其中其中X(k)为采样值,Y(k)为滤波器的计算输出值数字PID控制器的改进★

复合数字滤波—把两种以上的滤波方法结合起来使用—把中值滤波的思想与算术平均的方法结合起来,就是一种常用的复合滤波法,其具体做法是:首先将采样值按大小排队,去掉最大和最小的,然后再把剩下的取平均值。这样显然比单纯的平均值滤波的效果要好§4.1数字控制器的连续化设计技术

修改微分项(4点中心差分法)

将TD/T选择得比理想情况下稍小一些

用4点中心差分法构成偏差平均值

再通过加权求和形式近似构成微分项★

然后将其代替原式中的微分项数字PID控制器的改进其它修改算法◆给定值突变时对控制量进行阻尼的算法★

前置滤波器

§4.1数字控制器的连续化设计技术★

修改算法中对给定值变化敏感的项

—微分项中不考虑给定值的变化,将二阶差分项用代替,即:

—将比例环节内的偏差项也进行相应修改,可得到具有更大阻尼的算法:

数字PID控制器的改进◆增量运算法中动态过程的加速

★比例项与积分项的符号关系为:若被控量继续偏离给定值,则这两项符号相同;被控量向给定值方向变化,则这两项符号相反

★当被控量接近给定值时,反号的比例作用阻碍了积分作用,因而避免了积分超调及随之带来的振荡,单如果被控量远未接近给定值仅刚开始向给定值变化时,则由于比例项和积分项反向,将会减慢控制过程★为了加快开始的动态过程,可人为选择一偏差范围,当时按正常规律调节;而当时取其绝对值

§4.1数字控制器的连续化设计技术◆

纯滞后补偿算法

★有纯滞后的常规反馈控制回路

系统闭环传递函数为系统的特征方程中包含有,因此会使系统的稳定性下降

数字PID控制器的改进★Smith预测器虚线部分是带纯滞后补偿的调节器,其传递函数为经过纯滞后补偿控制,系统的闭环传递函数为§4.1数字控制器的连续化设计技术★具有纯滞后补偿的数字PID控制器

许多工业对象可以用一阶惯性环节和纯滞后环节表示:因此预估器的传函为:数字PID控制器的改进★纯滞后补偿控制算法步骤: (1)计算反馈回路偏差:(2)计算施密斯预估器的输出:先写成微分形式再转换为相应的差分方程式:其中,(3)计算反馈回路偏差:(4)计算PID控制器输出:§4.1数字控制器的连续化设计技术PID控制的发展

变速积分的PID控制

★思想:是设法改变积分项的累加速度,使其与偏差的大小相对应。偏差大时,积分累加速度慢,积分作用弱;反之,偏差小时,使积分累加速度加快,积分作用增强

★方法:设置一系数f[E(k)],它是E(k)的函数,当|E(k)|增大时,f减小,反之则增大。每次采样后,用f[E(k)]乘以E(k),再进行累加,即:

数字PID控制器的改进★

优点(与普通PID相比):

—实现了用比例作用消除大偏差,用积分作用消除小偏差的理想调节特性,从而完全消除了积分饱和现象—大大减小了超调量,可以很容易地使系统稳定,改善了调节特品质—适应能力强,一些用常规PID控制不理想的过程可以采用此种算法—参数整定容易,各参数间的相互影响小★与积分分离的比较:—二者很类似,但调节方式不同。积分分离对积分项采用“开关”控制,而变速积分则是根据误差的大小改变积分项速度,属线性控制。因而,后者调节品质大为提高,是一种新型的PID控制§4.1数字控制器的连续化设计技术◆

带死区的PID控制

★消除由于频繁动作所引起的振荡数字PID控制器的改进

◆消除积分不灵敏区的PID控制★在增量型PID算式中,当微机的运算字长较短时,如果采样周期T较短,而积分时间Ti又较长,则容易出现Δui小于微机字长精度的情况,此时Δui就要被丢掉,该次采样后的积分控制作用就会消失,这种情况称为积分不灵敏区,它将影响积分消除静差的作用★为了消除这种积分不灵敏区,除增加A/D转换器位数,以加长字长,提高运算精度外,还可以将小于输出精度ε的积分项Δui累加起来,而不将其丢掉§4.1数字控制器的连续化设计技术

◆可变增益PID控制

—在实际的实时控制中,严格的讲被控对象都具有非线性,为了补偿受控过程的这一非线性,PID的增益Kp可以随控制过程的变化而变化,即:其中f(e)是与误差e有关的可变增益,它实质上是一个非线性环节,可由计算机实现对被控对象的非线性补偿数字PID控制器的改进◆时间最优PID控制-最优控制的含义:某个指标最优-Bang-Bang控制:开关控制,对|u(t)|≤1,采用一定的方法在+1,-1间切换,使时间最短-时间最优PID控制:Bang-Bang控制和PID控制相结合§4.1数字控制器的连续化设计技术

◆参数自寻优PID控制—为评价PID的最佳调节,通常用以下各种积分型性能指标作为最优性能指标:—过程:首先根据所确定的性能指标,按照使J为极值的原则,求出PID的三个参数KP、TI、TD的最优值,然后整定PID控制器数字PID控制器的改进

◆自适应PID控制—自适应控制+

PID控制

◆模糊PID控制—模糊控制+PID控制

◆PID专家控制系统—专家系统+PID控制数字PID控制器的改进MagneticResonanceImaging磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚、层距、层数、矩阵等序列常规序列自旋回波(SE),快速自旋回波(FSE)梯度回波(FE)反转恢复(IR),脂肪抑制(STIR)、水抑制(FLAIR)高级序列水成像(MRCP,MRU,MRM)血管造影(MRA,TOF2D/3D)三维成像(SPGR)弥散成像(DWI)关节运动分析是一种成像技术而非扫描序列自旋回波(SE)必扫序列图像清晰显示解剖结构目前只用于T1加权像快速自旋回波(FSE)必扫序列成像速度快多用于T2加权像梯度回波(GE)成像速度快对出血敏感T2加权像水抑制反转恢复(IR)水抑制(FLAIR)抑制自由水梗塞灶显示清晰判断病灶成份脂肪抑制反转恢复(IR)脂肪抑制(STIR)抑制脂肪信号判断病灶成分其它组织显示更清晰血管造影(MRA)无需造影剂TOF法PC法MIP投影动静脉分开显示水成像(MRCP,MRU,MRM)含水管道系统成像胆道MRCP泌尿路MRU椎管MRM主要用于诊断梗阻扩张超高空间分辨率扫描任意方位重建窄间距重建技术大大提高对小器官、小病灶的诊断能力三维梯度回波(SPGR) 早期诊断脑梗塞

弥散成像MRI的设备一、信号的产生、探测接受1.磁体(Magnet):静磁场B0(Tesla,T)→组织净磁矩M0

永磁型(permanentmagnet)常导型(resistivemagnet)超导型(superconductingmagnet)磁体屏蔽(magnetshielding)2.梯度线圈(gradientcoil):

形成X、Y、Z轴的磁场梯度功率、切换率3.射频系统(radio-frequencesystem,RF)

MR信号接收二、信号的处理和图象显示数模转换、计算机,等等;MRI技术的优势1、软组织分辨力强(判断组织特性)2、多方位成像3、流空效应(显示血管)4、无骨骼伪影5、无电离辐射,无碘过敏6、不断有新的成像技术MRI技术的禁忌证和限度1.禁忌证

体内弹片、金属异物各种金属置入:固定假牙、起搏器、血管夹、人造关节、支架等危重病人的生命监护系统、维持系统不能合作病人,早期妊娠,高热及散热障碍2.其他钙化显示相对较差空间分辨较差(体部,较同等CT)费用昂贵多数MR机检查时间较长1.病人必须去除一切金属物品,最好更衣,以免金属物被吸入磁体而影响磁场均匀度,甚或伤及病人。2.扫描过程中病人身体(皮肤)不要直接触碰磁体内壁及各种导线,防止病人灼伤。3.纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。4.病人应带耳塞,以防听力损伤。扫描注意事项颅脑MRI适应症颅内良恶性占位病变脑血管性疾病梗死、出血、动脉瘤、动静脉畸形(AVM)等颅脑外伤性疾病脑挫裂伤、外伤性颅内血肿等感染性疾病脑脓肿、化脓性脑膜炎、病毒性脑炎、结核等脱髓鞘性或变性类疾病多发性硬化(MS)等先天性畸形胼胝体发育不良、小脑扁桃体下疝畸形等脊柱和脊髓MRI适应证1.肿瘤性病变椎管类肿瘤(髓内、髓外硬膜内、硬膜外),椎骨肿瘤(转移性、原发性)2.炎症性疾病脊椎结核、骨髓炎、椎间盘感染、硬膜外脓肿、蛛网膜炎、脊髓炎等3.外伤骨折、脱位、椎间盘突出、椎管内血肿、脊髓损伤等4.脊柱退行性变和椎管狭窄症椎间盘变性、膨隆、突出、游离,各种原因椎管狭窄,术后改变,5.脊髓血管畸形和血管瘤6.脊髓脱髓鞘疾病(如MS),脊髓萎缩7.先天性畸形胸部MRI适应证呼吸系统对纵隔及肺门区病变显示良好,对肺部结构显示不如CT。胸廓入口病变及其上下比邻关系纵隔肿瘤和囊肿及其与大血管的关系其他较CT无明显优越性心脏及大血管大血管病变各类动脉瘤、腔静脉血栓等心脏及心包肿瘤,心包其他病变其他(如先心、各种心肌病等)较超声心动图无优势,应用不广腹部MRI适应证主要用于部分实质性器官的肿瘤性病变肝肿瘤性病变,提供鉴别信息胰腺肿瘤,有利小胰癌、胰岛细胞癌显示宫颈、宫体良恶性肿瘤及分期等,先天畸形肿瘤的定位(脏器上下缘附近)、分期胆道、尿路梗阻和肿瘤,MRCP,MRU直肠肿瘤骨与关节MRI适应证X线及CT的后续检查手段--钙质显示差和空间分辨力部分情况可作首选:1.累及骨髓改变的骨病(早期骨缺血性坏死,早期骨髓炎、骨髓肿瘤或侵犯骨髓的肿瘤)2.结构复杂关节的损伤(膝、髋关节)3.形状复杂部位的检查(脊柱、骨盆等)软件登录界面软件扫描界面图像浏览界面胶片打印界面报告界面报告界面2合理应用抗菌药物预防手术部位感染概述外科手术部位感染的2/3发生在切口医疗费用的增加病人满意度下降导致感染、止血和疼痛一直是外科的三大挑战,止血和疼痛目前已较好解决感染仍是外科医生面临的重大问题,处理不当,将产生严重后果外科手术部位感染占院内感染的14%~16%,仅次于呼吸道感染和泌尿道感染,居院内感染第3位严重手术部位的感染——病人的灾难,医生的梦魇

预防手术部位感染(surgicalsiteinfection,SSI)

手术部位感染的40%–60%可以预防围手术期使用抗菌药物的目的外科医生的困惑★围手术期应用抗生素是预防什么感染?★哪些情况需要抗生素预防?★怎样选择抗生素?★什么时候开始用药?★抗生素要用多长时间?定义:指发生在切口或手术深部器官或腔隙的感染分类:切口浅部感染切口深部感染器官/腔隙感染一、SSI定义和分类二、SSI诊断标准——切口浅部感染

指术后30天内发生、仅累及皮肤及皮下组织的感染,并至少具备下述情况之一者:

1.切口浅层有脓性分泌物

2.切口浅层分泌物培养出细菌

3.具有下列症状体征之一:红热,肿胀,疼痛或压痛,因而医师将切口开放者(如培养阴性则不算感染)

4.由外科医师诊断为切口浅部SSI

注意:缝线脓点及戳孔周围感染不列为手术部位感染二、SSI诊断标准——切口深部感染

指术后30天内(如有人工植入物则为术后1年内)发生、累及切口深部筋膜及肌层的感染,并至少具备下述情况之一者:

1.切口深部流出脓液

2.切口深部自行裂开或由医师主动打开,且具备下列症状体征之一:①体温>38℃;②局部疼痛或压痛

3.临床或经手术或病理组织学或影像学诊断,发现切口深部有脓肿

4.外科医师诊断为切口深部感染

注意:感染同时累及切口浅部及深部者,应列为深部感染

二、SSI诊断标准—器官/腔隙感染

指术后30天内(如有人工植入物★则术后1年内)、发生在手术曾涉及部位的器官或腔隙的感染,通过手术打开或其他手术处理,并至少具备以下情况之一者:

1.放置于器官/腔隙的引流管有脓性引流物

2.器官/腔隙的液体或组织培养有致病菌

3.经手术或病理组织学或影像学诊断器官/腔隙有脓肿

4.外科医师诊断为器官/腔隙感染

★人工植入物:指人工心脏瓣膜、人工血管、人工关节等二、SSI诊断标准—器官/腔隙感染

不同种类手术部位的器官/腔隙感染有:

腹部:腹腔内感染(腹膜炎,腹腔脓肿)生殖道:子宫内膜炎、盆腔炎、盆腔脓肿血管:静脉或动脉感染三、SSI的发生率美国1986年~1996年593344例手术中,发生SSI15523次,占2.62%英国1997年~2001年152所医院报告在74734例手术中,发生SSI3151例,占4.22%中国?SSI占院内感染的14~16%,仅次于呼吸道感染和泌尿道感染三、SSI的发生率SSI与部位:非腹部手术为2%~5%腹部手术可高达20%SSI与病人:入住ICU的机会增加60%再次入院的机会是未感染者的5倍SSI与切口类型:清洁伤口 1%~2%清洁有植入物 <5%可染伤口<10%手术类别手术数SSI数感染率(%)小肠手术6466610.2大肠手术7116919.7子宫切除术71271722.4肝、胆管、胰手术1201512.5胆囊切除术8222.4不同种类手术的SSI发生率:三、SSI的发生率手术类别SSI数SSI类别(%)切口浅部切口深部器官/腔隙小肠手术6652.335.412.3大肠手术69158.426.315.3子宫切除术17278.813.57.6骨折开放复位12379.712.28.1不同种类手术的SSI类别:三、SSI的发生率延迟愈合疝内脏膨出脓肿,瘘形成。需要进一步处理这里感染将导致:延迟愈合疝内脏膨出脓肿、瘘形成需进一步处理四、SSI的后果四、SSI的后果在一些重大手术,器官/腔隙感染可占到1/3。SSI病人死亡的77%与感染有关,其中90%是器官/腔隙严重感染

——InfectControlandHospEpidemiol,1999,20(40:247-280SSI的死亡率是未感染者的2倍五、导致SSI的危险因素(1)病人因素:高龄、营养不良、糖尿病、肥胖、吸烟、其他部位有感染灶、已有细菌定植、免疫低下、低氧血症五、导致SSI的危险因素(2)术前因素:术前住院时间过长用剃刀剃毛、剃毛过早手术野卫生状况差(术前未很好沐浴)对有指征者未用抗生素预防五、导致SSI的危险因素(3)手术因素:手术时间长、术中发生明显污染置入人工材料、组织创伤大止血不彻底、局部积血积液存在死腔和/或失活组织留置引流术中低血压、大量输血刷手不彻底、消毒液使用不当器械敷料灭菌不彻底等手术特定时间是指在大量同种手术中处于第75百分位的手术持续时间其因手术种类不同而存在差异超过T越多,SSI机会越大五、导致SSI的危险因素(4)SSI危险指数(美国国家医院感染监测系统制定):病人术前已有≥3种危险因素污染或污秽的手术切口手术持续时间超过该类手术的特定时间(T)

(或一般手术>2h)六、预防SSI干预方法根据指南使用预防性抗菌药物正确脱毛方法缩短术前住院时间维持手术患者的正常体温血糖控制氧疗抗菌素的预防/治疗预防

在污染细菌接触宿主手术部位前给药治疗

在污染细菌接触宿主手术部位后给药

防患于未然六、预防SSI干预方法

——抗菌药物的应用121预防和治疗性抗菌素使用目的:清洁手术:防止可能的外源污染可染手术:减少粘膜定植细菌的数量污染手术:清除已经污染宿主的细菌六、预防SSI干预方法

——抗菌药物的应用122需植入假体,心脏手术、神外手术、血管外科手术等六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素使用指征:可染伤口(Clean-contaminatedwound)污染伤口(Contaminatedwound)清洁伤口(Cleanwound)但存在感染风险六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素显示有效的手术有:妇产科手术胃肠道手术(包括阑尾炎)口咽部手术腹部和肢体血管手术心脏手术骨科假体植入术开颅手术某些“清洁”手术六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用

理想的给药时间?目前还没有明确的证据表明最佳的给药时机研究显示:切皮前45~75min给药,SSI发生率最低,且不建议在切皮前30min内给药影响给药时间的因素:所选药物的代谢动力学特性手术中污染发生的可能时间病人的循环动力学状态止血带的使用剖宫产细菌在手术伤口接种后的生长动力学

手术过程

012345671hr2hrs6hrs1day3-5days细菌数logCFU/ml六、预防SSI干预方法

——抗菌药物的应用128术后给药,细菌在手术伤口接种的生长动力学无改变

手术过程抗生素血肿血浆六、预防SSI干预方法

——抗菌药物的应用Antibioticsinclot

手术过程

血浆中抗生素予以抗生素血块中抗生素血浆术前给药,可以有效抑制细菌在手术伤口的生长六、预防SSI干预方法

——抗菌药物的应用130ClassenDC,etal..NEnglJMed1992;326:281切开前时间切开后时间予以抗生素切开六、预防SSI干预方法

——抗菌药物的应用不同给药时间,手术伤口的感染率不同NEJM1992;326:281-6投药时间感染数(%)相对危险度(95%CI)早期(切皮前2-24h)36914(3.8%)6.7(2.9-14.7)4.3手术前(切皮前45-75min)170810(0.9%)1.0围手术期(切皮后3h内)2824(1.4%)2.4(0.9-7.9) 2.1手术后(切皮3h以上)48816(3.3%)5.8(2.6-12.3)

5.8全部284744(1.5%)似然比病人数六、预防SSI干预方法

——抗菌药物的应用结论:抗生素在切皮前45-75min或麻醉诱导开始时给药,预防SSI效果好132六、预防SSI干预方法

——抗菌药物的应用切口切开后,局部抗生素分布将受阻必须在切口切开前给药!!!抗菌素应在切皮前45~75min给药六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?有效安全杀菌剂半衰期长相对窄谱廉价六、预防SSI干预方法

——抗菌药物的应用抗生素的选择原则:各类手术最易引起SSI的病原菌及预防用药选择六、预防SSI干预方法

——抗菌药物的应用

手术最可能的病原菌预防用药选择胆道手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢哌酮或

(如脆弱类杆菌)头孢曲松阑尾手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢噻肟;

(如脆弱类杆菌)+甲硝唑结、直肠手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢曲松或

(如脆弱类杆菌)头孢噻肟;+甲硝唑泌尿外科手术革兰阴性杆菌头孢呋辛;环丙沙星妇产科手术革兰阴性杆菌,肠球菌头孢呋辛或头孢曲松或

B族链球菌,厌氧菌头孢噻肟;+甲硝唑莫西沙星(可单药应用)注:各种手术切口感染都可能由葡萄球菌引起六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用单次给药还是多次给药?没有证据显示多次给药比单次给药好伤口关闭后给药没有益处多数指南建议24小时内停药没有必要维持抗菌素治疗直到撤除尿管和引流管手术时间延长或术中出血量较大时可重复给药细菌污染定植感染一次性用药用药24h用药4872h数小时从十数小时到数十小时六、预防SSI干预方法

——抗菌药物的应用用药时机不同,用药期限也应不同短时间预防性应用抗生素的优点:六、预防SSI干预方法

——抗菌药物的应用减少毒副作用不易产生耐药菌株不易引起微生态紊乱减轻病人负担可以选用单价较高但效果较好的抗生素减少护理工作量药品消耗增加抗菌素相关并发症增加耐药抗菌素种类增加易引起脆弱芽孢杆菌肠炎MRSA(耐甲氧西林金黄色葡萄球菌)定植六、预防SSI干预方法

——抗菌药物的应用延长抗菌素使用的缺点:六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?正确的给药方法:六、预防SSI干预方法

——抗菌药物的应用应静脉给药,2030min滴完肌注、口服存在吸收上的个体差异,不能保证血液和组织的药物浓度,不宜采用常用的-内酰胺类抗生素半衰期为12h,若手术超过34h,应给第2个剂量,必要时还可用第3次可能有损伤肠管的手术,术前用抗菌药物准备肠道局部抗生素冲洗创腔或伤口无确切预防效果,不予提倡不应将日常全身性应用的抗生素应用于伤口局部(诱发高耐药)必要时可用新霉素、杆菌肽等抗生素缓释系统(PMMA—青大霉素骨水泥或胶原海绵)局部应用可能有一定益处六、预防SSI干预方法

——抗菌药物的应用不提倡局部预防应用抗生素:时机不当时间太长选药不当,缺乏针对性六、预防SSI干预方法

——抗菌药物的应用预防用药易犯的错误:在开刀前45-75min之内投药按最新临床指南选药术后24小时内停药择期手术后一般无须继续使用抗生素大量对比研究证明,手术后继续用药数次或数天并不能降低手术后感染率若病人有明显感染高危因素或使用人工植入物,可再用1次或数次小结预防SSI干预方法

——正确的脱毛方法用脱毛剂、术前即刻备皮可有效减少SSI的发生手术部位脱毛方法与切口感染率的关系:备皮方法 剃毛备皮 5.6%

脱毛0.6%备皮时间 术前24小时前 >20%

术前24小时内 7.1%

术前即刻 3.1%方法/时间 术前即刻剪毛 1.8%

前1晚剪/剃毛 4.0%THANKYOUMagneticResonanceImagingPART01磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间PART02MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论