2023高二数学的知识点总结汇总_第1页
2023高二数学的知识点总结汇总_第2页
2023高二数学的知识点总结汇总_第3页
2023高二数学的知识点总结汇总_第4页
2023高二数学的知识点总结汇总_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页共页2023年高二数学重要的知识点整理总结高二数学的知识点总结汇总高二数学重要的知识点整理总结高二数学的知识点总结篇一一般地,设一个总体含有n个个体,从中逐个不放回地抽取n个个体作为样本(n≤n),假设每次抽取时总体内的各个个体被抽到的时机都相等,就把这种抽样方法叫做简单随机抽样。简单随机抽样的特点:(1)用简单随机抽样从含有n个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;(3)简单随机抽样方法,表达了抽样的客观性与公平性,是其他更复杂抽样方法的根底.(4)简单随机抽样是不放回抽样;它是逐个地进展抽取;它是一种等概率抽样简单抽样常用方法:(1)抽签法:先将总体中的所有个体(共有n个)编号(号码可从1到n),并把号码写在形状、大小一样的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进展均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.高二数学重点知识点集合的分类:(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,一样的对象归入同一个集合时只能算作集合的一个元素。(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。集合可以根据它含有的'元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。非负整数全体构成的集合,叫做自然数集,记作n;在自然数集内排除0的集合叫做正整数集,记作n+或n.;整数全体构成的集合,叫做整数集,记作z;有理数全体构成的集合,叫做有理数集,记作q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)实数全体构成的集合,叫做实数集,记作r。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)1.列举法:假设一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.无限集有时也用上述的列举法表示,例如,自然数集n可表示为{1,2,3,…,n,…}.2.描绘法:一种更有效地描绘集合的方法,是用集合中元素的特征性质来描绘。例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈r│x能被2整除,且大于0}或{x∈r│x=2n,n∈n+},大括号内竖线左边的x表示这个集合的任意一个元素,元素x从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。一般地,假设在集合i中,属于集合a的任意一个元素x都具有性质p(x),而不属于集合a的元素都不具有的性质p(x),那么性质p(x)叫做集合a的一个特征性质。于是,集合a可以用它的性质p(x)描绘为{x∈i│p(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论