版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某中学元旦晚会共由6个节目组成,演出顺序有如下要求:节目甲必须排在乙的前面,丙不能排在最后一位,该晚会节目演出顺序的编排方案共有()A.720种 B.600种 C.360种 D.300种2.观察下列各式:,则的末四位数字为()A.3125 B.5625 C.0625 D.81253.已知函数是(-∞,+∞)上的减函数,则a的取值范围是A.(0,3) B.(0,3] C.(0,2) D.(0,2]4.函数在区间的图像大致为().A. B.C. D.5.若是的增函数,则的取值范围是()A. B. C. D.6.已知为正数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.一根细金属丝下端挂着一个半径为1cm的金属球,将它浸没底面半径为2cm的圆柱形容器内的水中,现将金属丝向上提升,当金属球被拉出水面时,容器内的水面下降了()A.cm B.cm C.cm D.cm8.有本相同的数学书和本相同的语文书,要将它们排在同一层书架上,并且语文书不能放在一起,则不同的放法数为()A. B. C. D.9.某几何体的三视图如图所示,其中正视图和侧视图的上半部分均为半圆,下半部分为等腰直角三角形,则该几何体的表面积为()A. B. C. D.10.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. B.C. D.11.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星至地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c.李明根据所学的椭圆知识,得到下列结论:①卫星向径的最小值为a-c,最大值为a+c;②卫星向径的最小值与最大值的比值越小,椭圆轨道越扁;③卫星运行速度在近地点时最小,在远地点时最大其中正确结论的个数是A.0 B.1 C.2 D.312.若,则()A.10 B.-10 C.1014 D.1034二、填空题:本题共4小题,每小题5分,共20分。13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价(元)456789销量(件)908483807568由表中数据,求得线性回归方程为,则实数______.14.函数fx=lnx-2x的图象在点15.已知直线的一个法向量,则直线的倾斜角是_________(结果用反三角函数表示);16.在的展开式中,的系数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个盒子里装有个均匀的红球和个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为.(1)求,的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率.18.(12分)已知:(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;(2)求展开式中含的项.19.(12分)已知,命题对任意,不等式成立;命题存在,使得成立.(1)若p为真命题,求m的取值范围;(2)若p且q为假,p或q为真,求m的取值范围;20.(12分)在直角坐标系中,斜率为k的动直线l过点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若直线l与曲线C有两个交点,求这两个交点的中点P的轨迹关于参数k的参数方程;(2)在条件(1)下,求曲线的长度.21.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.22.(10分)在平面直角坐标系中,圆为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线l的极坐标方程为.分别求圆的极坐标方程和曲线的直角坐标方程;设直线交曲线于两点,曲线于两点,求的长;为曲线上任意一点,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据题意,分2步进行分析:①,将除丙之外的5人排成一排,要求甲在乙的前面,②,5人排好后有5个空位可选,在其中任选1个,安排丙,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:将除丙之外的5人排成一排,要求甲在乙的前面,有种情况,②5人排好后有5个空位可选,在其中任选1个,安排丙,有5种情况,则有60×5=300种不同的顺序,故选D.【点睛】本题考查排列、组合的实际应用,涉及分步计数原理的应用,属于基础题.2、C【解析】
根据,分析次数与末四位数字的关系,归纳其变化规律求解.【详解】因为,观察可知的末四位数字3125,的末四位数字5625,的末四位数字8125,的末四位数字0625,又,则的末四位数字为0625.故选:C【点睛】本题主要考查数列中的归纳推理,还考查了理解辨析推理的能力,属于中档题.3、D【解析】
由为上的减函数,根据和时,均单调递减,且,即可求解.【详解】因为函数为上的减函数,所以当时,递减,即,当时,递减,即,且,解得,综上可知实数的取值范围是,故选D.【点睛】本题主要靠考查了分段函数的单调性及其应用,其中熟练掌握分段的基本性质,列出相应的不等式关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、A【解析】分析:判断的奇偶性,在上的单调性,计算的值,结合选项即可得出答案.详解:设,当时,,当时,,即函数在上为单调递增函数,排除B;由当时,,排除D;因为,所以函数为非奇非偶函数,排除C,故选A.点睛:本题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用,试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力.5、A【解析】
利用函数是上的增函数,保证每支都是增函数,还要使得两支函数在分界点处的函数值大小,即,然后列不等式可解出实数的取值范围.【详解】由于函数是的增函数,则函数在上是增函数,所以,,即;且有,即,得,因此,实数的取值范围是,故选A.【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点:(1)确保每支函数的单调性和原函数的单调性一致;(2)结合图象确保各支函数在分界点处函数值的大小关系.6、A【解析】
根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【详解】①当时,满足,但不成立,即必要性不成立,②若,则,即,即故,成立,即充分性成立,综上所述,“”是“”的充分不必要条件.故选:A.【点睛】本题主要考查了判断必要不充分条件,解题关键是掌握判断充分条件和必要条件的方法,考查了分析能力和计算能力,属于基础题.7、D【解析】
利用等体积法求水面下降高度。【详解】球的体积等于水下降的体积即,.答案:D.【点睛】利用等体积法求水面下降高度。8、A【解析】由题意,故选A.点睛:本题是不相邻问题,解决方法是“插空法”,先把数学书排好(由于是相同的数学书,因此只有一种放法),再在数学书的6个间隔(含两头)中选3个放语文书(语文书也相同,只要选出位置即可),这样可得放法数为,如果是5本不同的数学书和3本不同的语文书,则放法为.9、A【解析】
根据三视图知:几何体为半球和圆柱和圆锥的组合体,计算表面积得到答案.【详解】根据三视图知:几何体为半球和圆柱和圆锥的组合体..故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.10、B【解析】
本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,共10种.其中恰有2只做过测试的取法有共6种,所以恰有2只做过测试的概率为,选B.【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11、C【解析】
根据椭圆的焦半径的最值来判断命题①,根据椭圆的离心率大小与椭圆的扁平程度来判断命题②,根据题中“速度的变化服从面积守恒规律”来判断命题③。【详解】对于命题①,由椭圆的几何性质得知,椭圆上一点到焦点距离的最小值为a-c,最大值为a+c,所以,卫星向径的最小值为a-c,最大值为a+c,结论①正确;对于命题②,由椭圆的几何性质知,当椭圆的离心率e=ca越大,椭圆越扁,卫星向径的最小值与最大值的比值a-ca+c对于命题③,由于速度的变化服从面积守恒规律,即卫星的向径在相同的时间内扫过的面积相等,当卫星越靠近远地点时,向径越大,当卫星越靠近近地点时,向径越小,由于在相同时间扫过的面积相等,则向径越大,速度越小,所以,卫星运行速度在近地点时最大,在远地点时最小,结论③错误。故选:C。【点睛】本题考查椭圆的几何性质,考查椭圆几何量对椭圆形状的影响,在判断时要充分理解这些几何量对椭圆形状之间的关系,考查分析问题的能力,属于中等题。12、C【解析】
先求出,对等式两边求导,代入数据1得到答案.【详解】取对等式两边求导取故答案为C【点睛】本题考查了二项式定理,对两边求导是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、106【解析】
求出样本中心坐标,代入回归方程即可求出值.【详解】解:,,将代入回归方程得,解得.故答案为:.【点睛】本题考查回归方程问题,属于基础题.14、x+y+1=0【解析】
求导,利用导数的几何意义求出切线斜率,由点斜式方程写出切线方程。【详解】∵f'(x)=1x所以切线方程为y-(-2)=(-1)(x-1),即x+y+1=0。【点睛】本题主要考查函数图像在某点处的切线方程求法。15、【解析】
由法向量与方向向量垂直,求出方向向量,得直线的斜率,从而得倾斜角。【详解】直线的一个法向量,则直线的一个方向向量为,其斜率为,∴倾斜角为。故答案为:。【点睛】本题考查求直线的倾斜角,由方向向量与法向量的垂直关系可求得直线斜率,从而求得倾斜角,注意倾斜角范围是,而反正切函数值域是。16、【解析】
本题考查二项式定理.二项展开式的第项为.则的第项为,令,可得的系数为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)设该盒子里有红球个,白球个,利用古典概型、对立事件概率计算公式列出方程组,能求出,.(2)“一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率.【详解】解:(1)设该盒子里有红球个,白球个.根据题意得,解方程组得,,故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件.设“一次从盒子里任取3个球,取到的白球个数为3个”为事件,则设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件,则,故.因此,从盒子里任取3个球,取到的白球个数不少于红球个数的概率为.【点睛】本题考查实数值、概率的求法,考查古典概型、对立事件概率计算公式、互斥事件概率加法公式等基础知识,考查理解能力、运算求解能力,属于中档题.18、(1)1,(2)【解析】由题意知,第五项系数为,第三项的系数,则有,解.(1)令得各项系数的和为.(2)通项公式,令,则,故展开式中含的项为.19、(1)(2)【解析】
(1)对任意,不等式恒成立,.利用函数的单调性与不等式的解法即可得出.(2)存在,使得成立,可得,命题为真时,.由且为假,或为真,,中一个是真命题,一个是假命题,再分别求出参数的取值范围最后取并集即可.【详解】解(1)∵对任意,不等式恒成立,∴.即.解得.因此,若p为真命题时,m的取值范围是.(2)存在,使得成立,∴,命题q为真时,.∵p且q为假,p或q为真,∴p,q中一个是真命题,一个是假命题.当p真q假时,则解得;当p假q真时,,即.综上所述,m的取值范围为.【点睛】本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.20、(1);(2)【解析】
(1)把两边同时乘以,然后结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,设直线的方程为,与曲线联立,利用根与系数的关系可得两个交点的中点的轨迹关于参数的参数方程;(2)化参数方程为普通方程,作出图形,数形结合即可求得曲线的长度.【详解】解:(1)曲线C的直角坐标方程为.设直线l的方程为,设直线l与曲线C的交点为,,联立直线l与曲线C的方程得解得,,,,设P的坐标为,则,代入l的方程得.故的参数方程为.(2)由的参数方程得即.如图,圆C:圆心为,半径为2,圆D:圆心为,半径为2,曲线为劣弧,显然,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论