2023年山东省临沂市蒙阴县实验中学数学高二第二学期期末监测模拟试题含解析_第1页
2023年山东省临沂市蒙阴县实验中学数学高二第二学期期末监测模拟试题含解析_第2页
2023年山东省临沂市蒙阴县实验中学数学高二第二学期期末监测模拟试题含解析_第3页
2023年山东省临沂市蒙阴县实验中学数学高二第二学期期末监测模拟试题含解析_第4页
2023年山东省临沂市蒙阴县实验中学数学高二第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则()A.1或9 B.6 C.9 D.以上都不对2.已知函数,则“”是“在上单调递增”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.直线的斜率为()A. B. C. D.4.函数的单调递增区间是()A. B.C. D.5.双曲线x2a2A.y=±2x B.y=±3x6.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-3A.-1 B.1 C.-2 D.27.已知函数,,若方程在上有两个不等实根,则实数m的取值范围是()A. B. C. D.8.若角的终边上有一点,则的值是()A. B. C. D.9.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.310.已知三棱锥的四个顶点在空间直角坐标系中的坐标分别为,,,,画该三棱锥的三视图的俯视图时,以平面为投影面,得到的俯视图可以为()A. B. C. D.11.若,则()A.2 B.0 C.-1 D.-212.若二项式的展开式中二项式系数的和是64,则展开式中的常数项为A. B. C.160 D.240二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在三棱锥中,若,,是的中点,则下列命题中正确的是_______(填序号).①平面平面;②平面平面;③平面平面,且平面平面;④平面平面,且平面平面.14.直线被圆截得的弦长为________.15.已知球的半径为1,、是球面上的两点,且,若点是球面上任意一点,则的取值范围是__________.16.设函数,若对任意的实数都成立,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知5名同学站成一排,要求甲站在中间,乙不站在两端,记满足条件的所有不同的排法种数为.(I)求的值;(II)求的展开式中的常数项.18.(12分)已知函数(1)求函数的单调区间;(2)若函数恰有四个零点,求实数的取值范围。19.(12分)如图,平面,在中,,,交于点,,,,.(1)证明:;(2)求直线与平面所成角的正弦值.20.(12分)已知函数.(1)当时,讨论函数的单调性;(2)当,时,对任意,都有成立,求实数的取值范围.21.(12分)某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。(1)根据以上资料完成下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?身体状况好身体状况一般总计爱好运动不爱好运动总计(2)现将位工人的健康指数分为如下组:,,,,,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求与的误差值;(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。附:。22.(10分)设实部为正数的复数z,满足|z|=,且复数(1+3i)z在复平面内对应的点在第一、三象限的角平分线上.(I)求复数z(II)若复数+m2(1+i)-2i十2m-5为纯虚数,求实数m的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据双曲线的一条渐近线方程为求出,由双曲线的定义求出,判断点在左支上,即求.【详解】双曲线的渐近线方程为,又双曲线的一条渐近线方程为,.由双曲线的定义可得,又,或.点在左支上,.故选:.【点睛】本题考查双曲线的定义和性质,属于基础题.2、A【解析】f′(x)=x2+a,当a≥0时,f′(x)≥0恒成立,故“a>0”是“f(x)在R上单调递增”的充分不必要条件.故选A.3、A【解析】

将直线方程化为斜截式,可得出直线的斜率.【详解】将直线方程化为斜截式可得,因此,该直线的斜率为,故选A.【点睛】本题考查直线斜率的计算,计算直线斜率有如下几种方法:(1)若直线的倾斜角为且不是直角,则直线的斜率;(2)已知直线上两点、,则该直线的斜率为;(3)直线的斜率为;(4)直线的斜率为.4、C【解析】

首先利用诱导公式化简函数解析式,之后应用余弦函数单调区间的公式解关于x的不等式,即可得到所求单调递增区间.【详解】因为,根据余弦函数的性质,令,可得,所以函数的单调递增区间是,故选C.【点睛】该题考查的是有关余弦型函数的单调怎区间的求解问题,在解题的过程中,涉及到的知识点有诱导公式,余弦函数的单调增区间,余弦型函数的性质,注意整体角思维的运用.5、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a26、A【解析】

先求出f2,再利用奇函数的性质得f【详解】由题意可得,f2=22-3=1因此,f-2=-f【点睛】本题考查利用函数的奇偶性求值,解题时要注意结合自变量选择解析式求解,另外就是灵活利用奇偶性,考查计算能力,属于基础题。7、C【解析】

对的范围分类,即可将“方程在上有两个不等实根”转化为“在内有实数解,且方程的正根落在内”,记,结合函数零点存在性定理即可列不等式组,解得:,问题得解.【详解】当时,可化为:整理得:当时,可化为:整理得:,此方程必有一正、一负根.要使得方程在上有两个不等实根,则在内有实数解,且方程的正根落在内.记,则,即:,解得:.故选C【点睛】本题主要考查了分类思想及转化思想,还考查了函数零点存在性定理的应用,还考查了计算能力及分析能力,属于难题.8、A【解析】

由题意利用任意角的三角函数的定义,求出的值.【详解】解:若角的终边上有一点,则

∴.

故选:A.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.9、D【解析】D试题分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解:,∴y′(0)=a﹣1=2,∴a=1.故答案选D.考点:利用导数研究曲线上某点切线方程.10、C【解析】点在的投影为,点在的投影为,在的投影为,在的投影为,连接四点,注意实线和虚线,得出俯视图,选C11、C【解析】令可得:,令,可得:,据此可得:-1.本题选择C选项.点睛:因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.12、D【解析】

由二项式定义得到二项展开式的二项式系数和为,由此得到,然后求通项,化简得到常数项,即可得到答案.【详解】由已知得到,所以,所以展开式的通项为,令,得到,所以展开式的常数项为,故选D.【点睛】本题主要考查了二项展开式的二项式系数以及特征项的求法,其中熟记二项展开式的系数问题和二项展开式的通项是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、③【解析】

由AB=BC,AD=CD,说明对棱垂直,推出平面ABC⊥平面BDE,且平面ADC⊥平面BDE,即可得出结论.【详解】因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,故答案为:③.【点睛】本题考查了平面与平面垂直的判定,考查学生分析解决问题的能力,属于基础题.14、4【解析】

将圆的方程化为标准方程,求出圆心坐标与半径,利用点到直线的距离公式,运用勾股定理即可求出截得的弦长【详解】由圆可得则圆心坐标为,半径圆心到直线的距离直线被圆截得的弦长为故答案为【点睛】本题主要考查了求直线被圆所截的弦长,由弦长公式,分别求出半径和圆心到直线的距离,然后运用勾股定理求出弦长15、【解析】分析:以球心为坐标原点建立空间直角坐标系,设点的坐标,用来表示,进而求出答案.详解:由题可知,则,以球心为坐标原点,以为轴正方向,平面的垂线为轴建立空间坐标系,则,,设,在球面上,则设,当直线与圆相切时,取得最值.由得故答案为点睛:本题考查了空间向量数量积的运算,使用坐标法可以简化计算,动点问题中变量的取值范围是解此类问题的关键.16、【解析】

根据题意取最大值,根据余弦函数取最大值条件解得的表达式,进而确定其最小值.【详解】因为对任意的实数x都成立,所以取最大值,所以,因为,所以当时,取最小值为.【点睛】函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间;由求减区间.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)12;(II)672.【解析】

(I)先考虑特殊要求,再排列其他的;(II)根据二项式定理展开式的通项公式求解.【详解】(I)所有不同的排法种数.(II)由(I)知,,的展开式的通项公式为,令,解得,展开式中的常数项为.【点睛】本题考查排列与二项式定理.18、(1)单调增区间,单调减区间或;(2).【解析】

(1)求导数,根据导数的正负确定函数单调性.(2)设转换为二次方程,确定二次方程有两个不同解,根据方程的两个解与极值关系得到范围.【详解】解:(1)令,得,故函数的单调增区间为单调减区间为或(2)令因为关于的方程至多有两个实根,①当显然无零点,此时不满足题意;②当有且只有一个实根,结合函数的图像,可得此时至多上零点也不满足题意③当,此时有两个不等实根设若要有四个零点则而,所以解得又故【点睛】本题考查了函数的单调性,函数的零点问题,综合性大,计算较难,意在考查学生对于函数导数知识的综合灵活运用和计算能力.19、(1)证明见解析;(2).【解析】

过D作平行线DH,则可得两两垂直,以它们为坐标轴建立空间直角坐标,求出长,写出的坐标.求出相应向量,(1)由,证得垂直;(2)求出平面的法向量,直线与平面所成角的正弦值等于向量和夹角余弦值的绝对值.由向量的数量积运算易求.【详解】(1)过D作平行线DH,以D为原点,DB为x轴,DC为y轴,为轴,建立空间坐标系,如图,在中,,,,,交于点,,;,,,;(2)由(1)可知,,,设平面BEF的法向量为,所以,,取,,设直线与平面所成角为,所以=.【点睛】本题考查证明空间两直线垂直,考查求直线与平面所成的角,解题方法是建立空间直角坐标系,由向量法证明线线垂直,求线面角,这种方法主要考查学生的运算求解能力,思维量很少,解法固定.20、(1)见解析;(2).【解析】

1通过讨论a的范围,求出函数的单调区间即可;2原问题等价于,成立,可得,可得,即,设,,可得在单调递增,且,即可得不等式的解集即可.【详解】1函数的定义域为.当时,,所以.当时,,所以函数在上单调递增.当时,令,解得:,当时,,所以函数在上单调递减;当时,,所以函数在上单调递增.综上所述,当,时,函数在上单调递增;当,时,函数在上单调递减,在上单调递增.2对任意,,有成立,,,成立,,时,.当时,,当时,,在单调递减,在单调递增,,,,设,,.在递增,,可得,,即,设,,在恒成立.在单调递增,且,不等式的解集为.实数b的取值范围为.【点睛】本题考查了导数的应用,利用导数研究函数的单调区间,恒成立问题,考查了转化思想、运算能力,属于压轴题.21、(1)列联表见解析;有的把握认为“身体状况好与爱好运动有关系”;(2)误差值为;(3)数学期望【解析】

(1)根据茎叶图补全列联表,计算可得,从而得到结论;(2)利用平均数公式求得真实值;利用频率直方图估计平均数的方法求得估计值,作差得到结果;(3)可知,利用二项分布数学期望计算公式求得结果.【详解】(1)由茎叶图可得列联表如下:身体状况好身体状况一般总计爱好运动不爱好运动总计有的把握认为“身体状况好与爱好运动有关系”(2)由茎叶图可得:真实值由直方图得:估计值误差值为:(3)从该厂健康指数不低于的员工中任选人,爱好运动的概率为:则数学期望【点睛】本题考查独立性检验、茎叶图和频率分布直方图的相关知识、二项分布数学期望的计算,涉及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论