2023年内蒙古乌拉特前旗第一中学数学高二下期末监测模拟试题含解析_第1页
2023年内蒙古乌拉特前旗第一中学数学高二下期末监测模拟试题含解析_第2页
2023年内蒙古乌拉特前旗第一中学数学高二下期末监测模拟试题含解析_第3页
2023年内蒙古乌拉特前旗第一中学数学高二下期末监测模拟试题含解析_第4页
2023年内蒙古乌拉特前旗第一中学数学高二下期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若关于的不等式有解,则实数的取值范围是()A. B.C. D.2.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A.150种 B.180种 C.300种 D.345种3.若,;,则实数,,的大小关系为()A. B.C. D.4.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数(单位:辆)均服从正态分布,若,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为()A. B. C. D.5.已知集合,,则()A. B. C. D.6.用数学归纳法证明1+2+3+⋯+n2=n4A.k2+1C.k2+17.直三棱柱中,,,、分别为、的中点,则异面直线与所成角的余弦值为()A. B. C. D.8.的展开式中的系数是()A.58 B.62 C.52 D.429.设集合,则A. B. C. D.10.用反证法证明“”时,应假设()A. B.C. D.11.设,则()A. B. C. D.12.不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某等腰直角三角形的一条直角边长为4,若将该三角形绕着直角边旋转一周所得的几何体的体积是,则_____.14.极坐标方程为所表示的曲线的离心率是______.15.若实数,满足条件,则的最大值为__________.16.下表提出了某厂节能耗技术改造后,在生产产品过程中记录的产量(吨)与相应的生产耗能(吨)的几组相对数据.根据上表提供的数据,求出关于的线性回归直线方程,那么表中__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:(1)求这1000件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.(i)利用该正态分布,求;(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出100件这种产品,记表示这件产品的利润,求.附:,若,则.18.(12分)(1)求函数的最大值;(2)若函数有两个零点,求实数a的取值范围.19.(12分)如图所示,四边形为菱形,且,,,且,平面.(1)求证:平面平面;(2)求平面与平面所成锐二面角的正弦值.20.(12分)如图是某市年月日至日的空气质量指数趋势图,某人随机选择年月日至月日中的某一天到达该市,并停留天.(1)求此人到达当日空气质量指数大于的概率;(2)设是此人停留期间空气质量指数小于的天数,求的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)21.(12分)某名校从2008年到2017年考入清华、北大的人数可以通过以下表格反映出来.(为了方便计算,将2008年编号为1,2009年编号为2,以此类推……)年份人数(1)根据最近5年的数据,利用最小二乘法求出与之间的线性回归方程,并用以预测2018年该校考入清华、北大的人数;(结果要求四舍五入至个位)(2)从这10年的数据中随机抽取2年,记其中考入清华、北大的人数不少于的有年,求的分布数列和数学期望.参考公式:.22.(10分)为发展业务,某调研组对,两个公司的产品需求量进行调研,准备从国内个人口超过万的超大城市和()个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为.(1)求的值;(2)若一次抽取个城市,则:①假设取出小城市的个数为,求的分布列和期望;②若取出的个城市是同一类城市,求全为超大城市的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先将不等式转化为,然后构造函数,只要小于的最大值即可【详解】解:由,得,令,则当时,;当时,所以在上单调递增,在上单调递减所以当时,取最大值,所以故选:A【点睛】此题考查了利用导数研究函数的单调性和最值,属于中档题2、D【解析】试题分析:分两类(1)甲组中选出一名女生有种选法;(2)乙组中选出一名女生有种选法.故共有345种选法考点:排列组合3、A【解析】

根据指数函数与对数函数的性质,分别确定,,的范围,即可得出结果.【详解】因为,,,所以.故选A【点睛】本题主要考查对数与指数比较大小的问题,熟记对数函数与指数函数的性质即可,属于常考题型.4、C【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过辆的概率,这三个收费口每天至少有一个超过辆的概率,故选C.点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.5、A【解析】

由已知得,因为,所以,故选A.6、C【解析】

首先分析题目求用数学归纳法证明1+1+3+…+n1=n4+n22时,当n=k+【详解】当n=k时,等式左端=1+1+…+k1,当n=k+1时,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故选:C.【点睛】本题主要考查数学归纳法,属于中档题./7、B【解析】

以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角的余弦值.【详解】以为原点,为轴,为轴,为轴,建立空间直角坐标系,设,则、、、、,,、,设异面直线与所成角为,则,异面直线与所成角的余弦值为.故选:B【点睛】本题考查了空间向量法求异面直线所成的角,解题的关键是建立恰当的坐标系,属于基础题.8、D【解析】

由题意利用二项展开式的通项公式,赋值即可求出.【详解】的展开式中的系数是.选D.【点睛】本题主要考查二项式定理的展开式以及赋值法求展开式特定项的系数.9、A【解析】由题意,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.10、A【解析】

根据反证法的步骤,假设是对原命题结论的否定,即可得出正确选项.【详解】根据反证法的步骤,假设是对原命题的否定,P(x0)成立的否定是使得P(x0)不成立,即用反证法证明“∀x∈R,2x>0”,应假设为∃x0∈R,0故选:A.【点睛】本题考查反证法的概念,全称命题的否定,注意“改量词否结论”11、A【解析】

利用中间值、比较大小,即先利用确定三个数的正负,再将正数与比较大小,可得出三个数的大小关系.【详解】由于函数在定义域上是减函数,则,且,,由于函数在定义域上是减函数,则,函数在定义域上是增函数,则,因此,,故选A.【点睛】本题考查指对数混合比大小,常用方法就是利用指数函数与对数函数的单调性,结合中间值法来建立桥梁来比较各数的大小关系,属于常考题,考查分析问题的能力,属于中等题.12、D【解析】

利用指数函数的单调性,得到关于的一元二次不等式,解得答案.【详解】不等式,转化为,因为指数函数单调递增且定义域为,所以,解得.故不等式的解集为.故选:D.【点睛】本题考查解指数不等式,一元二次不等式,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:几何体为圆锥,根据圆锥的体积公式求解详解:由题意可知三角形绕着直角边旋转一周所得的几何体为圆锥,体积是点睛:三角形旋转为圆锥,体积公式为。14、【解析】

将极坐标方程化为直角坐标方程,即可求得曲线的离心率.【详解】极坐标方程,展开化简可得,即,因为代入可得则曲线为双曲线,由双曲线标准方程可知,所以双曲线离心率为,故答案为:.【点睛】本题考查了极坐标与直角坐标方程的转化,双曲线离心率的求法,属于基础题.15、6【解析】分析:现根据约束条件画出可行域,再利用几何意义求最值,求出最优解,然后求解的最大值即可.详解:现根据实数满足条件,画出可行域,如图所示,由目标函数,则,结合图象可知,当直线过点时,目标函数取得最大值,此时最大值为.点睛:本题主要考查了简单的线性规划求最大值,其中画出约束条件所表示的平面区域,根据直线的几何意义求解是解答的关键,着重考查了推理与运算能力.16、【解析】试题分析:由题意可知,因为回归直线方程,经过样本中心,所以=1.7×2.5+1.35,解得t=3考点:线性回归方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)200,150;(2)(i);(ⅱ)280.【解析】

(1)直接利用样本平均数和样本方差公式计算得到答案.(2)(i)先判断,则(ⅱ)Ⅹ表示100件产品的正品数,题意得,计算,再计算【详解】(1)由题意得.∴,即样本平均数为200,样本方差为150.(2)(i)由(1)可知,,∴(ⅱ)设Ⅹ表示100件产品的正品数,题意得,∴,∴.【点睛】本题考查了数学期望,方差的计算,意在考查学生的计算能力和应用能力.18、(1)(2)【解析】

(1)求出.利用导函数的符号判断函数的单调性然后求解最大值;(2)分情况:①在时,②在时,③在时,判断函数的单调性,求解函数的极值与0的关系,然后求解零点个数.【详解】(1)对求导数,.在时,为增函数,在时为减函数,∴,从而的最大值为.(2)①在时,在R上为增函数,且,故无零点.②在时,在R上单增,又,,故在R上只有一个零点.③在时,由可知在时有唯一极小值,.若,,无零点,若,,只有一个零点,若,,而.由(1)可知,在时为减函数,∴在时,,从而.∴在与上各有一个零点.综上讨论可知:时,有两个零点.【点睛】本题考查函数的导数的应用,函数的单调性以及函数的极值的求法,函数的零点个数的判断,是难题.对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数,另一个是含自变量的函数,注意让含有自变量的函数式子尽量简单一些.19、(1)见解析;(2)平面与平面所成锐二面角的正弦值为.【解析】试题分析:(1)先证得平面,再根据面面垂直的判定定理得出结论;(2)建立合适的空间直角坐标系,分别求出平面AEF和平面ABE的法向量,利用二面角的公式求解即可.试题解析:(1)∵平面,∴平面,又平面,∴平面平面.(2)设与的交点为,建立如图所示的空间直角坐标系,则,∴设平面的法向量为,则,即,令,则,∴.设平面的法向量为,则,即,令,则,∴.∴,∴,∴平面与平面所成锐二面角的正弦值为.20、(1);(2)答案见解析;(3)答案见解析.【解析】分析:(1)由空气质量指数趋势图,直接利用古典概型概率公式可得“此人到达当日空气质量指数大于”的概率;(2)由题意可知,的可能取值为,,,分别利用古典概型概率公式求出相应的概率,由此能求出故的分布列,利用期望公式可得;(3)由图知,从日开始,连续三天(日,日,日)空气质量指数方差最大.详解:(1)设“此人到达当日空气质量指数大于”的事件为,则;(2)的可能取值为,,,则,,,故的分布列为:所以.(3)由图知,从日开始,连续三天(日,日,日)空气质量指数方差最大.点睛:本题主要考查互斥事件的概率公式、以及离散型随机变量的分布列与数学期望,属于中档题.求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.21、(1)2018年该校考入清华北大的人数约为15人.(2)分布列见解析;.【解析】分析:(1)求出,,从而求出和,即可得到与之间的线性回归方程,从而可得答案;(2)x的取值分别为0,1,2,求出相对应的概率即可得到答案.详解:(1),,故当时,,所以,2018年该校考入清华北大的人数约为15人.(2)随机变量x的取值分别为0,1,2,,,012.点睛:求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为,常数项为,这与一次函数的习惯表示不同.)22、(1)8;(2)①分布列见解析,;②.【解析】

(1)先由题意,得到共个城市,取出2个的方法总数是,其中全是小城市的情况有,由题中数据,得到,求解,即可得出结果;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论