2023年吉林省长春市吉林实验中学数学高二下期末统考模拟试题含解析_第1页
2023年吉林省长春市吉林实验中学数学高二下期末统考模拟试题含解析_第2页
2023年吉林省长春市吉林实验中学数学高二下期末统考模拟试题含解析_第3页
2023年吉林省长春市吉林实验中学数学高二下期末统考模拟试题含解析_第4页
2023年吉林省长春市吉林实验中学数学高二下期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数有()A.最大值为1 B.最小值为1C.最大值为 D.最小值为2.一个三位数的百位,十位,个位上的数字依次是,当且仅当时称为“凹数”,若,从这些三位数中任取一个,则它为“凹数”的概率是A. B. C. D.3.已知数列为等比数列,首项,数列满足,且,则()A.8 B.16 C.32 D.644.设,由不等式,,,…,类比推广到,则()A. B. C. D.5.设奇函数的最小正周期为,则()A.在上单调递减 B.在上单调递减C.在上单调递增 D.在上单调递增6.定义在上的函数若满足:①对任意、,都有;②对任意,都有,则称函数为“中心捺函数”,其中点称为函数的中心.已知函数是以为中心的“中心捺函数”,若满足不等式,当时,的取值范围为()A. B. C. D.7.已知实数满足则的最大值是()A.-2 B.-1 C.1 D.28.若直线的参数方程为(为参数),则直线的倾斜角为()A. B. C. D.9.给出下列四个命题:①回归直线过样本点中心(,)②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变③将一组数据中的每个数据都加上或减去同一个常数后,方差不变④在回归方程=4x+4中,变量x每增加一个单位时,y平均增加4个单位其中错误命题的序号是()A.① B.② C.③ D.④10.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量与当天平均气温,并制作了对照表:气温(℃)181310-1用电量(度)24343864由表中数据得到线性回归方程y=-2x+a,当气温为A.68度 B.52度 C.12度 D.28度11.已知二项式的展开式中各项的二项式系数和为,其展开式中的常数项为,则()A. B. C. D.12.z是z的共轭复数,若z+z=2,(z-zA.1+i B.-1-i C.-1+i D.1-i二、填空题:本题共4小题,每小题5分,共20分。13.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.14.如图,顶点为P的圆锥的轴截面是等腰直角三角形,母线PA=4,O是底面圆心,B是底面圆内一点,且AB⊥OB,C为PA的中点,OD⊥PB,垂足为D,当三棱锥O-PCD的体积最大时,OB=______.15.已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的,都有,则正整数的最大值为__________.16.用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,已知该校高二年级共有学生300人,则该校学生总数是_____人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,解不等式;(2)若关于的不等式恒成立,求实数的取值范围.18.(12分)设函数.(1)若对于一切实数,恒成立,求实数的取值范围;(2)若对于,恒成立,求实数的取值范围.19.(12分)已知函数,且.(Ⅰ)若是偶函数,当时,,求时,的表达式;(Ⅱ)若函数在上是减函数,求实数的取值范围.20.(12分)环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:空气污染指数(0,50](50,100](100,150](150,200](200,300](300,+∞)空气质量等级优良轻度污染中度污染重度污染严重污染某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.(1)求频率分布直方图中m的值;(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:空气质量优良轻度污染中度污染重度污染严重污染天数112711731根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.空气质量优、良空气质量污染总计限行前限行后总计参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考公式:,其中.21.(12分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设点是轨迹上位于第一象限且在直线右侧的动点,若以为圆心,线段为半径的圆与有两个公共点.试求圆在右焦点处的切线与轴交点纵坐标的取值范围.22.(10分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

对函数进行求导,判断出函数的单调性,进而判断出函数的最值情况.【详解】解:,当时,,当时,,在上单调递增,在上单调递减,有最大值为,故选A.【点睛】本题考查了利用导数研究函数最值问题,对函数的导函数的正负性的判断是解题的关键.2、C【解析】

先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解.【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有种方法,所以共有凹数8+6=14个,由古典概型的概率公式得P=.故答案为:C【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.3、C【解析】

先确定为等差数列,由等差的性质得进而求得的通项公式和的通项公式,则可求【详解】由题意知为等差数列,因为,所以,因为,所以公差,则,即,故,于是.故选:C【点睛】本题考查等差与等比的通项公式,等差与等比数列性质,熟记公式与性质,准确计算是关键,是基础题4、D【解析】由已知中不等式:归纳可得:不等式左边第一项为,第二项为,右边为,故第个不等式为:,故,故选D.【方法点睛】本题通过观察几组不等式,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.5、B【解析】分析:利用辅助角公式将函数进行化简,根号函数的周期和奇偶性即可得到结论.详解:,

∵函数的周期是,,

∵)是奇函数,

即∴当时,即则在单调递减,

故选:B.点睛:本题主要考查三角函数的解析式的求解以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.6、C【解析】

先结合题中条件得出函数为减函数且为奇函数,由,可得出,化简后得出,结合可求出,再由结合不等式的性质得出的取值范围.【详解】由知此函数为减函数.由函数是关于的“中心捺函数”,知曲线关于点对称,故曲线关于原点对称,故函数为奇函数,且函数在上递减,于是得,.,.则当时,令m=x,y=n则:问题等价于点(x,y)满足区域,如图阴影部分,由线性规划知识可知为(x,y)与(0,0)连线的斜率,由图可得,,故选:C.【点睛】本题考查代数式的取值范围的求解,解题的关键就是分析出函数的单调性与奇偶性,利用函数的奇偶性与单调性将题中的不等关系进行转化,应用到线性规划的知识,考查分析问题和解决问题的能力,属于难题.7、C【解析】作出可行域,如图内部(含两边),作直线,向上平移直线,增加,当过点时,是最大值.故选C.8、D【解析】

将直线的参数方程化为普通方程,求出斜率,进而得到倾斜角。【详解】设直线的倾斜角为,将直线的参数方程(为参数)消去参数可得,即,所以直线的斜率所以直线的倾斜角,故选D.【点睛】本题考查参数方程和普通方程的互化以及直线的倾斜角,属于简单题。9、B【解析】

由回归直线都过样本中心,可判断①;由均值和方差的性质可判断②③;由回归直线方程的特点可判断④,得到答案.【详解】对于①中,回归直线过样本点中心,故①正确;对于②中,将一组数据中的每个数据都加上或减去同一个常数后,平均值为加上或减去这个常数,故②错误;对于③中,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故③正确;对于④中,在回归直线方程,变量每增加一个单位时,平均增加4个单位,故④正确,故选B.【点睛】本题主要考查了回归直线方程的特点和均值、方差的性质的应用,着重考查了.判断能力,属于基础题.10、A【解析】由表格可知x=10,y=40,根据回归直线方程必过(x,y)得a11、C【解析】

二项展开式的二项式系数和为,可得,使其通项公式为常数项时,求得,从而得到关于的方程.【详解】展开式中各项的二项式系数和为,,得,,当时,,解得:.【点睛】求二项式定理展开式中各项系数和是用赋值法,令字母都为1;而展开式各项的二项式系数和固定为.12、D【解析】试题分析:设z=a+bi,z=a-bi,依题意有2a=2,-2b=2,故考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.解:P(A)=,P(AB)=.由条件概率公式得P(B|A)=.故答案为.点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.14、2【解析】

根据图形,说明PC是三棱锥P-OCH的高,△OCH的面积在OD=DC=2时取得最大值,求出OB【详解】AB⊥OB,可得PB⊥AB,即AB⊥面POB,所以面PAB⊥面POB.OD⊥PB,则OD⊥面PAB,OD⊥DC,OD⊥PC,又,PC⊥OC,所以PC⊥面OCD.即PC是三棱锥P-OCD的高.PC=OC=2.而△OCD的面积在OD=DC=2时取得最大值(斜边=2的直角三角形)当OD=2时,由PO=22,知∠OPB=故答案为:26【点睛】本题主要考查了圆锥的结构特征,棱锥的体积等知识,考查空间想象能力,属于中档题.15、【解析】分析:先根据单调性得对任意的都成立,再根据实数存在性得,即得,解得正整数的最大值.详解:因为偶函数在区间上是增函数,对任意的,都有,所以对任意的都成立,因为存在实数,所以即得,因为成立,,所以正整数的最大值为4.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.16、900【解析】

计算可得样本中高二年级人数,从而可计算得到抽样比,从而可求得学生总数.【详解】由题意可知,高二年级抽取:人抽样比为:该校学生总数为:人本题正确结果:【点睛】本题考查分层抽样的应用,关键是能够明确每层在样本中占比与该层在总体中的占比相同.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】

(1)根据题意得到,分,,三种情况讨论,即可得出结果;(2)先由关于的不等式恒成立,得到恒成立,结合绝对值不等式的性质,即可求出结果.【详解】(1)当时,即为,当时,,解得;当时,,可得;当时,,解得,综上,原不等式的解集为;(2)关于的不等式恒成立,即为恒成立,由,可得,解得:或.【点睛】本题主要考查含绝对值不等式,通常需要用到分类讨论的思想,灵活运用分类讨论的思想处理,熟记绝对值不等式的性质即可,属于常考题型.18、(1).(2)【解析】

(1)利用判别式可求实数的取值范围,注意二次项系数的讨论.(2)就三种情况讨论函数的最值后可得实数的取值范围.【详解】解:(1)要使恒成立,若,显然;若,则有,,∴.(2)当时,显然恒成立;当时,该函数的对称轴是,在上是单调函数.当时,由于,要使在上恒成立,只要即可,即得,即;当时,由于函数在上恒成立,只要即可,此时显然成立.综上可知.【点睛】一元二次不等式的恒成立问题,可以转化为函数的最值进行讨论,必要时需要考虑对称轴的不同位置.19、(1)见解析;(2).【解析】分析:⑴根据偶函数性质,当时,,求出表达式⑵复合函数同增异减,并且满足定义域详解:(Ⅰ)∵是偶函数,所以,又当时,∴当时,,∴,所以当时,.(Ⅱ)因为在上是减函数,要使在有意义,且为减函数,则需满足解得,∴所求实数的取值范围为.点睛:本题主要考查了复合函数,关键是分解为两个基本函数,利用同增异减的结论研究其单调性,再求参数范围。20、(1)0.003;(2);(3)有.【解析】

(1)因为限行分单双号,王先生的车被限行的概率为0.05,再利用概率和为1解得答案.(2)利用分层抽样得到空气质量良的天气被抽取的有4天,空气中度污染的天气被抽取的有2天,利用排列组合公式的到没有中度污染的概率,用1减得到答案.(3)补全列联表,计算,跟临界值表作比较得到答案.【详解】(1)因为限行分单双号,王先生的车被限行的概率为0.05,所以空气重度污染和严重污染的概率应为0.05×2=0.1,由频率分布直方图可知(0.004+0.006+0.005+m)×50+0.1=1,解得m=0.003.(2)因为空气质量良好与中度污染的天气的概率之比为0.3∶0.15=2∶1,按分层抽样的方法从中抽取6天,则空气质量良的天气被抽取的有4天,空气中度污染的天气被抽取的有2天.记事件A为“至少有一天空气质量是中度污染”.则(3)2×2列联表如下:空气质量优、良空气质量污染总计限行前9090180限行后382260总计128112240由表中数据可得,,所以有90%的把握认为空气质量的优良与汽车尾气的排放有关.【点睛】本题考查了概率的计算,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论