下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
类型一最优方案问题例1.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?【答案】:当降价2.5元时,每星期的利润最大,最大利润是6125元.【分析】:这是一道与商品销售有关的最优化问题.首先根据“利润=(售价-进价)×销售量”构建二次函数,然后通过配方或用顶点坐标公式求出最值.【解析】:(1)y=(60-x-40)(300+20x)
=6000+400x-300x-20x2
=-20x2+100x+6000自变量的取值范围是0≤x≤20.(2)∵a=-20<0,∴函数有最大值,∵,.∴当x=2.5时,y的最大值是6125.∴当降价2.5元时,每星期的利润最大,最大利润是6125元.图1ABCDx3040x例2现有一块矩形场地,如图1所示,长为40m,宽为30m,要将这块地划分为四块分别种植:图1ABCDx3040x(1)求出这块场地中种植菊花的面积与场地的长之间的函数关系式,并写出自为量的取值范围.(2)当是多少时,种植菊花的面积最大?最大面积是多少?【答案】:当时,种植菊米的面积最大,最大面积为225m2.【分析】:这是花草种植面积的最优化问题,先根据矩形的面积公式列出与之间的函数关系式,再利用配方法或公式法求得最大值.【解析】:(1)由题意知,场地宽为,∴,自变量的取值范围为.(2),当时,种植菊米的面积最大,最大面积为225m2.点评:求解与二次函数有关的最优化问题时,首先要根据题意构建函数关系式,然后再利用配方法或公式法求得最大值.有一点大家一定要注意:顶点横坐标在自变量的取值范围内时,二次函数在顶点处取得最值;顶点横坐标不在自变量的取值范围内时,要根据题目条件,具体分析,才能求出符合题意的最值.例3ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图1(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?【答案】:(1)四边形EFGH是正方形.(2)当CE=CF=0.1米时总费用最省.图1(2)ADFBEC(1)EFGHABDC【分析】:(1)通过观察图形,可猜想四边形EFGH是正方形。要注意图形中隐含的条件,由图1(2)可得△CEF是等腰直角三角形,即可说明四边形EFGH是正方形;(2)设图1(2)ADFBEC(1)EFGHABDC【解析】:(1)四边形EFGH是正方形.图1(2)可以看作是由四块图1(1)所示地砖绕C点按顺(逆)时针方向依次旋转90°后得到的,故CE=CF=CG=CH.∴△CEF、△CFG、△CGH、△CHE是四个全等的等腰直角三角形.因此EF=FG=GH=HE,∠FEH=∠EFG=∠GHE=∠FGH=90°,因此四边形EFGH是正方形.(2)设CE=x,则BE=0.4-x,每块地砖的费用为y,那么y=x×30+xx-x)]×10=10(xx+0.24)=10(x-0.1)2+2.3(0<x<0.4).当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1。答:当CE=CF=0.1米时总费用最省.说明:这类探究几何图形中的关系式的问题,在近年来考试题中较为常见,同学们要注意总结它们的方法,一般地,在平面几何中寻找关系式,要充分挖掘图形的性质,利用图形的性质(如面积公式、相似三角形的性质等)列出关系式。例4、一家电脑公司推出一款新型电脑.投放市场以来前3个月的利润情况如图2所示,该图可以近看作为抛物线的一部分.请结合图象,解答以下问题:(1)求该抛物线对应的二次函数解析式;(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少?yxyx332413O图2【答案】:(1)(2)49(3)15个月【分析】:(1)结合图象可以判断出是该函数是二次函数,利用待顶系数法即可解决;(2)在(1)的基础上配方即可;(2)令y=0,列出一元二次方程,解方程即可。【解析】:(1)因为图象过原点,故可设该二次函数的解析式为:,由图知:,解得,所以.(2)=-(x-7)2+49,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考级乐理课件教学课件
- 幼儿乘机课件教学课件
- 2024年乙方接受房产抵债具体协议
- 2024供应链管理运输合同
- 2024年度专利申请成果转化许可合同
- 2024年度搬厂工程安全监督合同
- 2024年度市场营销策划执行合同
- 04版无人机研发与销售合同
- 2024年度文化艺术品收藏与展览合同
- 2024年度无人机采购与租赁合同
- 办公室工作分工安排表
- 2023年副主任医师(副高)-耳鼻咽喉科学(副高)历年考试真题(易错与难点汇编)带答案
- 中药的外治膏药
- 小学数学专题讲座(课堂PPT)
- 煤矿职业卫生培训课件2023
- 传染病报告与管理培训
- 丹参培育讲义
- 高血压原因待查疑难病例讨论
- 通信工程基站铁塔监理规划
- 教师成绩进步发言稿3篇
- ISO27001:2022信息安全管理手册+全套程序文件+表单
评论
0/150
提交评论