版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计假设检验的思想第1页,课件共15页,创作于2023年2月引言
前一章中我们讨论了如何根据样本去得到总体分布中所含参数的最优(优良)估计。用参数估计方法得到的总体参数的优良估计值,去代替总体分布的未知参数而得到的“总体”,与真的总体作比较,就要考察它们之间是否在统计意义上相拟合,尽管这种比较也只能在样本的基础上进行。那么,怎样在样本的基础上做出一个有较大把握的结论,就是统计假设检验问题。事实上,实际中很多统计问题都可以作为统计假设检验问题予以解决。第2页,课件共15页,创作于2023年2月一.假设检验的概念我们来看一个例子。
例1:设某厂生产一种灯泡,其寿命服从的正态分布,从过去较长一段时间的生产情况看,灯泡的平均寿命小时。现在采取新工艺后,在所生产的灯管中抽取25只测得平均寿命为1650小时。
问:采用新工艺后,灯管的寿命是否有显著提高?
本例的问题就是要我们判断:新产品的寿命是:
1、服从
正态分布呢?还是2、仍然服从的正态分布呢?若新产品的寿命是服从的正态分布,就说“新产品的寿命
有显著提高”;若新产品的寿命是仍然服从的正态分布,就说“
新产品的寿命没有显著提高”
。第3页,课件共15页,创作于2023年2月在上面的例子中,我们可以把涉及到的两种情况用统计假设的形式表示出来。第一个统计假设:。称为原假设,用符号:表示。,表示“采用新工艺后,灯管寿命没有显著提高。”即“和老产品一样,服从均值为1500的正态分布”。第二个统计假设:。称为备选假设,用符号:表示。,表示“采用新工艺后,灯管寿命有显著提高。”即“不同于老产品,服从均值大于1500的正态分布”。今后,我们把任意一个有关总体分布不确定的假设
称为统计假设或简称假设。第4页,课件共15页,创作于2023年2月
至于在两个假设中用哪个作为原假设,哪个作为备选假设呢?
要看具体的目的和要求而定。(1)一般,假如我们的目的是希望从样本观测值对某一陈述取得强有力的支持,我们就将这一陈述的否定作为原假设,而把陈述本身作为备选假设。对例1我们作的统计假设就是这样的。因为,新工艺是延长灯泡寿命的一种革新,我们当然希望新工艺能使灯泡的寿命确有提高,但它又不象老产品那样有较多的数据。为此,我们以“即寿命没有提高”作为原假设,以“寿命显著提高”作为备选假设。(2)有时,原假设的选定还要考虑数学上的处理方便。
在许多问题中,总体分布的类型为已知,仅仅是其分布函数中的一个或几个参数为未知,只要对这一个或几个参数的值作出假设,就可以完全确定总体的分布。如上例只要对作出假设即可。这种仅涉及到总体分布的未知参数的统计假设称为:参数假设。
在有些实际问题中,我们不知道总体分布的具体类型。比如:某种蔬菜的农药残留量,它可能服从对数正态分布,也可能服从其它分布。因此,对它的统计假设就只能对未知分布的类型或它的某些特征提出某种假设。这种不同于参数假设的统计假设称为:非参数假设。
例如:设某种蔬菜的农药残留量X的分布函数为F(x),
F(x){对数正态分布族};F(x){正态分布族}
都是非参数假设。第5页,课件共15页,创作于2023年2月
从上面我们看到,一个统计假设是对总体分布状态的一种陈述。如果一个统计假设可完全确定总体的分布,则称这种假设为:简单统计假设
或
简单假设。否则,称为:复合统计假设或简称复合假设。例如:完全确定总体的分布,是简单假设;而:是复合假设。
统计假设检验问题的一般提法是:
在给定备选假设下,对原假设作出判断。若拒绝原假设,那就意味着接受备选假设;否则,就接受原假设。简单地说,统计假设检验问题,就是要在原假设备选假设中作出拒绝哪一个接受哪一个的判断。这类假设检验问题常称为对的检验问题。小结:统计假参数假非参数假复合假设简单假设原假设备选假设第6页,课件共15页,创作于2023年2月拒绝
在对的检验问题中,要作出某种判断,必须从样本出发,制定出一个“法则”,一旦样本观测值确定后,我们就可以用所构造的“法则”作出:拒绝,还是拒绝的判断。
那么我们的检验“法则”是什么呢?
它应该是以定义在样本空间上的一个样本函数为依据所构成的一个“准则”。一旦样本观测值确定后,我们就可以根据这个“准则”作出:“拒绝”,还是“拒绝的”判断。
二、假设检验的思想方法我们的检验准则本质上就是:把样本空间划分成两个互不相交的子集和,(子空间)
使得当样本观测值点时,我们就将拒绝原假设(也即接受备选假设);否则,我们将接受原假设(也即拒绝备选假设)。这样的划分构成一个准则,我们称这样的样本空间的子集为假设检验的临界域(或拒绝域)。拒绝接受接受n维空间拒绝划分第7页,课件共15页,创作于2023年2月反之,一旦我们给出了某个检验“准则”,也就给出了样本空间的一个“划分”。
由于样本的随机性,在进行判断时,我们还是有可能犯两类错误:
拒绝接受接受n维空间拒绝第一类错误拒真、弃真第二类错误受假、受伪
判断属于拒绝(接受)拒绝(接受)总体假设当为真(为假)
犯第一类错误
正确
当
为真(为假)
正确犯第二类错误划分第8页,课件共15页,创作于2023年2月第一类(弃真、拒真)错误发生的概率称为犯第一类错误的概率或拒真概率。
通常记为,即:P(
拒绝|为真)=第二类(受假、受伪)错误发生的概率称为犯第二类错误的概率或受伪概率。
通常记为,即:
P(接受|为假)=。
也就是:P(
拒绝|为真)=
对于给定的一对假设和,总可以找出许多临界域。当然,我们希望寻得这种临界域---使犯两类错误的概率和都很小。但在样本容量固定时,要使和都很小是不可能的。否则,将会导致样本容量的无限增大,这又是不现实的。基于这种情况,奈曼与皮尔逊(Neyman—Pearson)提出了一个原则:在控制犯第一类错误的概率的条件下,尽量使犯第二类错误的概率小。之所以提出这样的原则,是因为人们常常把错误地拒绝比错误地接受看得更重要些。尽管基于奈曼与皮尔逊的这一原则可以去讨论寻找最优检验的问题,但是有时最优检验法则很难找到,甚至可能不存在。因而,我们不得不将奈曼与皮尔逊的这一原则放宽:只对犯第一类错误的概率加以限制,而不考虑犯第二类错误的概率。如此,在寻找临界域时只涉及原假设,而不涉及备选假设。这种只涉及原假设的统计假设检验问题称为显著性假设检验问题。
第9页,课件共15页,创作于2023年2月下面我们来讨论,对给定的犯第一类错误的概率(显著性水平)在显著性假设检验问题中,如何来构造一个检验“法则”?如果一个检验法则已经确定,那么临界域及其补集就完全确定了。在实践中为了能简化数据,总是去寻找这样一个统计量或样本函数,并记及于是P(为真)=P(
|为真)=这样就可以做出等价的判断:当时,就拒绝;否则,就接受。如此,就把对样本空间的划分问题转化为对统计量的值域空间的划分问题。由于样本空间是n维的,而统计量的值域空间是1
维的,所以通过构造合适的统计量可以使寻找临界域的问题变得简单多了。第10页,课件共15页,创作于2023年2月拒绝拒绝接受接受n维空间拒绝划分第11页,课件共15页,创作于2023年2月值得注意的是,如果我们构造的统计量t
的分布类型已知,只是它的分布参数不确定,那么在原假设成立的条件下,对给定的显著水平a,可以通过等式P(为真)=a
来定出区域,从而得到临界域C
。譬如,我们还拿例1来看:如果原假设:成立(为真),那么在新工艺下的灯泡的平均寿命。在重复取样下,的取值偏离1500较大的较少。那么由抽取的样本观测值算出的比1500大到什么程度,我们才认为这组样本观测值已经不是从成立所规定的总体中抽出的呢?我们取检验统计量,易知,在为真时,。对给定的显著水平a,由,可定出一个值,使得由样本观测值算出的时就拒绝,否则就接受。那么,临界域第12页,课件共15页,创作于2023年2月比如取,查标准正态分布表知,从而得到临界域:
={
}
而实际上,在采用新工艺后,对25只灯泡的平均寿命观测值;显然>1566,这组样本落入了临界域(拒绝域)C,因此我们就拒绝原假设,并且说:与1500有显著差异。第13页,课件共15页,创作于2023年2月那么,为什么能做出拒绝的决定呢?或者,换句话说,为什么能把{}作为临界域C呢?因为,在下,,,这意味着“”是一个小概率事件。根据小概率事件在一次试验中实际不可能发生的推断原理,现在在一次试验(观察)中竟然出现了,所以我们甘愿冒犯第一类错误的风险而拒绝原假设。下面,我们来归纳一下解题的思路和步骤:1.根据问题的要求建立原假设和备选假设。2.选取一个合适的统计量,一般以简单为好,并且它的分布已知(不含未知参数)从而可算出或查出分位点。3.给定显著性水平(一般较小,如0.05,0.01等),并在原假设为真时求出能使成立的值,从而求出临界域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通信光纤课件教学课件
- 黄山学院《创作训练》2021-2022学年第一学期期末试卷
- 淮阴师范学院《专业知识与教学能力选讲》2022-2023学年第一学期期末试卷
- 淮阴师范学院《小学语文课程标准解读与教材分析》2021-2022学年第一学期期末试卷
- 淮阴师范学院《管理学原理》2023-2024学年第一学期期末试卷
- 淮阴师范学院《基本体操(3)》2022-2023学年第一学期期末试卷
- DB6111∕T+215-2024+设施火龙果产期调控技术规程
- DB4110T74-2024农田氮磷面源污染源头减控技术规程
- 农药制造中的纳米技术应用考核试卷
- 海水淡化处理中的膜技术应用考核试卷
- 五年级道德与法治星星之火可以燎原教案统编版
- GB/T 7715-2014工业用乙烯
- 企鹅排队课件
- 部编版五年级语文上册《快乐读书吧》优秀课件
- 初中数学规律探索公开课完整教学课件
- 小学综合实践活动课课程标准
- 国家开放大学《现代汉语专题》章节自测参考答案
- 高三体育与健康教案
- 2022-2023学年天津市河西区高一年级上册学期期中数学试题【含答案】
- 国家开放大学《终身学习与职业发展》形考任务参考答案
- 山东省潍坊市2022-2023学年高二上学期期中考试语文试题 word版含答案
评论
0/150
提交评论