2022年广东省湛江市育才职业高级中学高二数学理上学期期末试卷含解析_第1页
2022年广东省湛江市育才职业高级中学高二数学理上学期期末试卷含解析_第2页
2022年广东省湛江市育才职业高级中学高二数学理上学期期末试卷含解析_第3页
2022年广东省湛江市育才职业高级中学高二数学理上学期期末试卷含解析_第4页
2022年广东省湛江市育才职业高级中学高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年广东省湛江市育才职业高级中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数y=(x﹣1)f′(x)的图象如图所示,其中f′(x)为函数f(x)的导函数,则y=f(x)的大致图象是()A. B. C. D.参考答案:B【考点】6A:函数的单调性与导数的关系.【分析】先结合函数y=(x﹣1)f'(x)的图象得到当x>1时,f'(x)>0,根据函数的单调性与导数的关系可知单调性,从而得到y=f(x)在(1,+∞)上单调递增,从而得到正确选项.【解答】解:结合图象可知当x>1时,(x﹣1)f'(x)>0即f'(x)>0∴y=f(x)在(1,+∞)上单调递增故选B.2.已知某公司现有职员150人,其中中级管理人员30人,高级管理人员10人,要从公司抽取30个人进行身体健康检查,如果采用分层抽样的方法,则职员中“中级管理人员”和“高级管理人员”各应该抽取的人数为()A.8,2 B.8,3 C.6,3 D.6,2参考答案:D【考点】分层抽样方法.【分析】利用要抽取的人数除以总人数,得到每个个体被抽到的概率,用概率乘以各个层次的人数,得到结果.【解答】解:∵公司现有职员150人,其中中级管理人员30人,高级管理人员10人,∴从公司抽取30个人进行身体健康检查,每个个体被抽到的概率是=,∴中级管理人员30×=6人,高级管理人员10×=2人,故选:D.3.设F1,F为椭圆C1:+=1,(a1>b1>0)与双曲线C2的公共左、右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形,且|MF1|=2,若椭圆C1的离心率e∈[,],则双曲线C2的离心率的取值范围是()A.[,] B.[,++∞) C.(1,4] D.[,4]参考答案:D【考点】双曲线的简单性质.【分析】如图所示,设双曲线C2的离心率为e1,椭圆与双曲线的半焦距为c.由椭圆的定义及其题意可得:|MF2|=|F1F2|=2c,|MF1|=2a﹣2c.由双曲线的定义可得:2a﹣2c﹣2c=2a1,即a﹣2c=a1,可得﹣2=,利用e∈[,],即可得出双曲线C2的离心率的取值范围.【解答】解:如图所示,设双曲线C2的离心率为e1.椭圆与双曲线的半焦距为c.由椭圆的定义及其题意可得:|MF2|=|F1F2|=2c,|MF1|=2a﹣2c.由双曲线的定义可得:2a﹣2c﹣2c=2a1,即a﹣2c=a1,∴﹣2=,∵e∈[,],∴∈[,],∴∈[,].∴e1∈[,4].故选:D.4.若复数z满足(i为虚数单位),则=(

)A.

B.

C.

D.参考答案:C

故选C.

5.执行如图所示的程序框图,若输入n=8,则输出的S=A. B. C. D.参考答案:A的意义在于是对求和.∵,,∴所求和为,选A.

6.在正方体ABCD﹣A1B1C1D1中,E、F分别是AA1和CC1的中点,则异面直线B1E与BF所成的角的余弦值为()A. B. C. D.参考答案:A【考点】异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线B1E与BF所成的角的余弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,又E、F分别是AA1和CC1的中点,∴B1(2,2,2),E(2,0,1),B(2,2,0),F(0,2,1),=(0,﹣2,﹣1),=(﹣2,0,1),设异面直线B1E与BF所成的角为θ,则cosθ===,∴异面直线B1E与BF所成的角的余弦值为.故选:A.7.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2] B.[1,2] C.[﹣2,2] D.[﹣2,1]参考答案:D【考点】1E:交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.8.在某项测量中,测量结果,且,若X在(0,1)内取值的概率为0.3,则X在(1,+∞)内取值的概率为(

)A.0.1 B.0.2 C.0.3 D.0.4参考答案:B【分析】根据,得到正态分布图象的对称轴为,根据在内取值的概率为0.3,利用在对称轴为右侧的概率为0.5,即可得出答案.【详解】∵测量结果,∴正态分布图象的对称轴为,∵在内取值的概率为0.3,∴随机变量X在上取值的概率为,故选B.【点睛】本小题主要考查正态分布曲线的特点及曲线所表示的意义、概率的基本性质等基础知识,考查运算求解能力,属于基础题.9.已知m,n是两条不同直线,是一个平面,则下列结论正确的是:(

)A.若,则

B.若,则C.若,则

D.若,则参考答案:D若,则或异面;若,则或异面或相交;若,则在外或只有D正确

10.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是(

)A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.(5分)函数的定义域为

.参考答案:由1﹣2log4(x﹣1)≥0,得0<x﹣1≤2,解得1<x≤3.所以原函数的定义域为(1,3].故答案为(1,3].由根式内部的代数式大于等于0,然后求解对数不等式即可得到答案.12.已知定义在上的奇函数,当时,,则时,

=

参考答案:由是奇函数且,知时,

,故

13.在平面直角坐标系XOY中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是______.参考答案:14.函数的定义域为

参考答案:试题分析:或,因此定义域为考点:函数定义域[KS5UKS5UKS5U][KS5UKS5UKS5U]15.在条件下,z=4-2x+y的最大值是

.参考答案:5略16.如果的展开式中系数绝对值最大的项是第4项,则的系数为

。参考答案:-617.将全体正整数排成一个三角形数阵:12

34

5

67

8

9

10.......按照以上排列的规律,第行()从左向右的第3个数为

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在正方体ABCD-A1B1C1D1中,E、

F分别是BB1、CD的中点.

(1)求证:平面;

(2)求平面与平面所成锐二面角的余弦值.

参考答案:略19.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若?p是?q的充分不必要条件,求实数a的取值范围.参考答案:【考点】复合命题的真假;必要条件、充分条件与充要条件的判断.【分析】(1)现将a=1代入命题p,然后解出p和q,又p∧q为真,所以p真且q真,求解实数a的取值范围;(2)先由¬p是¬q的充分不必要条件得到q是p的充分不必要条件,然后化简命题,求解实数a的范围.【解答】解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]20.已知函数

(1)若对任意的恒成立,求实数的最小值.(2)若且关于的方程在上恰有两个不相等的实数根,求实数的取值范围;参考答案:(1);

(2)21.(本小题满分10分)《选修4—4:坐标系与参数方程》在直角坐标系中,曲线的参数方程为

(为参数)是上的动点,点满足,点的轨迹为曲线.(1)求的方程;(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.参考答案:解:(1)设P(x,y),则由条件知M,由于M点在C1上,所以则C2的参数方程为(α为参数)。。。。。。。5分

(2)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2-ρ1|=2.。。。。。。。。。。。10分略22.某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组[1,3),第二组[3,5),第三组[5,7),第四组[7,9),第五组[9,11],绘制成如图所示的频率分布直方图.(Ⅰ)求学习时间在[7,9)的学生人数;(Ⅱ)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人的学习时间在第四组的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由频率分布图求出x=0.100,由此能求出学习时间在[7,9)的学生人数.(Ⅱ)第三组的学生人数为40人,利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为:第三组的人数为4人,第四组的人数为2人,由此能求出这2人中至少有1人的学习时间在第四组的概率.【解答】解:(Ⅰ)由频率分布图得:0.025×2+0.125×2+0.200×2+2x+0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论