ANSYS多物理耦合场有限元分析_第1页
ANSYS多物理耦合场有限元分析_第2页
ANSYS多物理耦合场有限元分析_第3页
ANSYS多物理耦合场有限元分析_第4页
ANSYS多物理耦合场有限元分析_第5页
已阅读5页,还剩250页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ANSYS多物理耦合场有限元分析<<航空工程先进数值计算技术>>ANSYS多物理耦合场有限元分析结构-热耦合分析流体-固体耦合分析ANSYS中的典型物理量(国际单位制)温度热流量热传导率密度比热对流换热系数热流温度梯度内部热生成DegreesC(orK)WattsWatts/(meter.degreeC)kilogram/(meter3)(Watt.sec)/(kilogram.degreeC)Watt/(meter2.degreeC)Watt/(meter2)degreeC/meterWatt/(meter3)ANSYS热分析热传递的类型热传递有三种基本类型:传导-两个良好接触的物体之间或一个物体内部不同部分之间由于温度梯度引起的能量交换。对流-在物体和周围流体之间发生的热交换。辐射-一个物体或两个物体之间通过电磁波进行的能量交换。在绝大多数情况下,分析的热传导问题都带有对流和/或辐射边界条件。ANSYS热分析传导引起的热通量流由传导的傅立叶定律决定:负号表示热量沿梯度的反向流动(例如,热量从热的部分流向冷的部分).传导Tnq*dTdnANSYS热分析对流对流引起的热通量由冷却牛顿定律得出:对流一般作为面边界条件施加TsTBANSYS热分析热力学第一定律能量守恒要求系统的能量改变与系统边界处传递的热和功数值相等。能量守恒在一个微小的时间增量下可以表示为方程形式将其应用到一个微元体上,就可以得到热传导的控制微分方程。ANSYS热分析单元类型下表显示通常使用的热单元类型。节点自由度是:TEMP。常用的热单元类型材料特性至少需要Kxx—

稳态分析热传导系数。如果是瞬态分析,则需要比热(C)。优先设置为“thermal”(热分析),在GUI方式中只显示热材料特性。实常数主要用于壳和线单元。热分析有限元模型ANSYS热分析稳态热传递

如果热量流动不随时间变化的话,热传递就称为是稳态的。由于热量流动不随时间变化,系统的温度和热载荷也都不随时间变化。由热力学第一定律,稳态热平衡可以表示为:输入能量—输出能量=0ANSYS热分析稳态热传递控制方程

对于稳态热传递,表示热平衡的微分方程为:相应的节点处的有限元平衡方程为:ANSYS热分析热载荷和边界条件的类型温度自由度约束,将确定的温度施加到模型的特定区域。均匀温度可以施加到没有温度约束的所有节点上。可以在稳态或瞬态分析的第一个子步对所有节点施加初始温度而非约束。它也可以在非线性分析中用于估计随温度变化材料特性的初值。热流率是集中节点载荷。正的热流率表示热量流入模型。热流率同样可以施加在关键点上。此载荷通常用于不能施加对流和热通量的情况下。施加该载荷到热传导率相差很大的区域上时应注意。ANSYS热分析热载荷和边界条件的类型对流施加在模型外表面上的面载荷,模拟模型表面与周围流体之间的热量交换。热通量(热流密度)

同样是面载荷。当通过面的热流率已知的情况下使用。正的热流密度值表示热量流入模型。热生成率

作为体载荷施加,代表体内生成的热,单位是单位体积内的热流率。ANSYS热分析热载荷和边界条件的类型ANSYS热载荷分为四大类:1.DOF约束-指定的DOF(温度)数值2.集中载荷-施加在点上的集中载荷(热流)3.面载荷-在面上的分布载荷(对流、热流密度)4.体载荷-体积或场载荷(热生成)ANSYS热分析热载荷和边界条件注意事项在ANSYS中,没有施加载荷的边界作为完全绝热处理。通过施加绝热边界条件(缺省条件)得到对称边界条件。如果模型某一区域的温度已知,就可以固定为该数值。反作用热流率只在固定了温度自由度时才具有。热载荷和边界条件的类型ANSYS热分析何为瞬态分析?由于受随时间变化的载荷和边界条件,如果需要知道系统随时间的响应,就需要进行瞬态分析

。热能存储效应在稳态分析中忽略,在此要考虑进去。时间,在稳态分析中只用于计数,现在有了确定的物理含义。涉及到相变的分析总是瞬态分析。时变载荷时变响应ANSYS热分析除了导热系数(k),还要定义密度(r)和比热(c)。稳态分析和瞬态分析对明显的区别在于加载和求解过程。*MASS71热质量单元比较特殊,它能够存贮热能单不能传导热能。因此,本单元不需要热传导系数。瞬态分析前处理考虑因素ANSYS热分析控制方程回忆线性系统热分析的控制方程矩阵形式。热存储项的计入将静态系统转变为瞬态系统:在瞬态分析中,载荷随时间变化......或,对于非线性瞬态分析,时间

温度:热存储项=(比热矩阵)x(时间对温度的微分)ANSYS热分析选择合理的时间步很重要,它影响求解的精度和收敛性。如果时间步长

太小,对于有中间节点的单元会形成不切实际的振荡,造成温度结果不真实。时间步大小建议TtDt如果时间步长太大,就不能得到足够的温度梯度。一种方法是先指定一个相对较保守的初始时间步长,然后使用自动时间步长按需要增加时间步。下面说明使用自动时间步长大致估计初始时间步长的方法。ANSYS热分析在瞬态热分析中大致估计初始时间步长,可以使用Biot和Fourier数。Biot

数是无量纲的对流和传导热阻的比率:其中Dx是名义单元宽度,h是平均对流换热系数,K

是平均导热系数。Fourier数是无量纲的时间(Dt/t),对于宽度为Dx

的单元它量化了热传导与热存储的相对比率:其中r

和c

是平均的密度和比热。时间步大小说明(续)ANSYS热分析如果Bi<1:可以将Fourier数设为常数并求解

Dt来预测时间步长:项

a表示热耗散。比较大的a

数值表示材料容易导热而不容易储存热能。如果Bi>1:时间步长可以用Fourier和Biot数的乘积预测:

求解Dt

得到: (Again,where0.1b

0.5)时间步长的预测精度随单元宽度的取值,材料特性的平均方法和比例因子b而变化。时间步大小说明(续)ANSYS热分析进行瞬态分析ANSYS缺省情况下是稳态分析。使用下列求解菜单指定要进行瞬态分析:“FULL”是瞬态热分析唯一可以使用的选项。7.用户要输入求解选项,并不是只对热分析有效(如求解器,N-R选项等)143256ANSYS热分析初始条件初始条件必须对模型的每个温度自由度定义,使得时间积分过程得以开始。施加在有温度约束的节点上的初始条件被忽略。根据初始温度域的性质,初始条件可以用以下方法之一指定:注:如果没有指定初始温度,初始DOF数值为0。ANSYS热分析均匀初始温度如果整个模型的初始温度为均匀且非0,使用下列菜单指定:1234ANSYS热分析非均匀的初始温度如果模型的初始温度分布已知但不均匀,使用这些菜单将初始条件施加在特定节点上:4.用图形选取或输入点号的方法确定要建立初始温度的节点。5.单击OK.

注:当手动或借助于输入文件输入IC命令时,可以使用节点组元名来区分节点。12354ANSYS热分析非均匀初始温度(续)注:没有定义DOF初始温度的节点其初始温度缺省为TUNIF命令指定的均匀数值。6.选择

DOF标记“TEMP”。7.指定初始温度数值。8.完成后单击OK。单击APPLY重复操作,将初始温度指定到其它节点上。678ANSYS热分析由稳态分析得到的初始温度(续)当模型中的初始温度分布是不均匀且未知的,单载荷步的稳态热分析可以用来确定瞬态分析前的初始温度。要这样做,按照下列步骤:1.稳态第一载荷步:进入求解器,使用稳态分析类型。施加稳态初始载荷和边界条件。为了方便,指定一个很小的结束时间(如1E-3秒)。避免使用非常小的时间数值(~1E-10)因为可能形成数值错误。指定其它所需的控制或设置(如非线性控制)。求解当前载荷步。ANSYS热分析施加瞬态分析控制和设置。求解之前,打开时间积分:求解当前瞬态载荷步。求解后续载荷步。时间积分效果保持打开直到在后面的载荷步中关闭为止。由稳态分析得到的初始温度(续)2.后续载荷步为瞬态:在第二个载荷步中,根据第一个载荷步施加载荷和边界条件。记住删除第一个载荷步中多余的载荷。1234ANSYS热分析打开/关闭时间积分效果象刚刚说明的那样,稳态分析可以迅速的变为瞬态分析,只要简单的在后续载荷步中将时间积分效果打开。同样,瞬态分析可以变成稳态分析,只要简单的在后续载荷步中将时间积分效果关闭。结论:从求解方法来说,瞬态分析和稳态分析的差别就在于时间积分。ANTYPE,TRANS+TIMINT,OFFANTYPE,STATICANTYPE,STATIC+TIMINT,ONANTYPE,TRANSANSYS热分析另外的时间积分例子在本例中,不是在分析的开始关闭时间积分效果来建立初始条件,而是在分析的结束关闭时间积分来“加速”瞬态。通常,分析的目标将将瞬态热现象中最严重的温度梯度定量。这些梯度通常在瞬态的初始阶段发生,并在系统进入稳态时随时间衰减。当系统响应稳定后,后面的结果就没有意义了,分析可以简单的结束或如果稳态温度场也需要得到,就在最后载荷步关闭时间积分效果。注意改变到稳态边界时的突变。最后一个载荷步的终止时间可以是任意的,但必须比前面的瞬态载荷步时间数值要大。ANSYS热分析打开控制打开控制用于在当瞬态热分析接近稳态时让自动时间步“打开”(增加)时间步长。在缺省情况下,如果连续3个子步间的最大温度变化都小于0.1个温度单位,那么时间步长将迅速增加以提高效率。这个控制只能在求解控制中实现。用这些菜单改变设置:3.指定温度。4.指定门槛值。5.指定子步数。6.单击OK。123456ANSYS热分析阶跃还是渐变?要准确模拟系统的瞬态响应,载荷必须以正确的幅值,在正确的时间和正确的速率施加。回忆一下载荷在载荷步中相对时间可以是阶跃的或渐变的:ANSYS缺省是渐变加载的。渐变加载可以提高瞬态求解的适应性,如果有非线性时可以提高收敛性。参考第4章学习ANSYS如何处理渐变载荷。ANSYS热分析阶跃还是渐变?(续)要模拟阶跃载荷,将载荷在很短的时间内渐变施加到全值,然后在后续载荷步中保持不变。问题:对茶壶进行瞬态热分析。在底上施加热流模拟炉子的加热。热流载荷应该是阶跃的还是渐变的如果...1.茶壶在一个刚燃着的炉子上2.茶壶载一个已经很热的炉子上ANSYS热分析什么是耦合场分析?

耦合场分析考虑两个或两个以上的物理场之间的相互作用。这种分析包括直接和间接耦合分析。当进行直接耦合时,多个物理场(如热—电)的自由度同时进行计算。这称为直接方法,适用于多个物理场各自的响应互相依赖的情况。由于平衡状态要满足多个准则才能取得,直接耦合分析往往是非线性的。每个结点上的自由度越多,矩阵方程就越庞大,耗费的机时也越多。下表列出了ANSYS中可以用作直接耦合分析的单元类型。不是所有单元都有温度自由度。结构-热耦合分析什么是耦合场分析?(续)间接耦合分析是以特定的顺序求解单个物理场的模型。前一个分析的结果作为后续分析的边界条件施加。有时也称之为序贯耦合分析。本分析方法主要用于物理场之间单向的耦合关系。例如,一个场的响应(如热)将显著影响到另一个物理场(如结构)的响应,反之不成立。本方法一般来说比直接耦合方法效率高,而且不需要特殊的单元类型。本章中我们只讨论涉及热的耦合现象。请注意并非所有ANSYS产品都支持所有耦合单元类型和分析选项。例如,ANSYS/Thermal产品只提供热—电直接耦合。详细说明参见Coupled-FieldAnalysisGuide。结构-热耦合分析直接方法-例题在第七章对流部分中,介绍了FLUID66和FLUID116热—流单元。该单元具有热和压力自由度,因此是直接耦合场单元。ANSYS有一些其他的耦合单元,具有结构,热,电,磁等自由度。绝大多数的实际问题只涉及到少数几个物理场的耦合。这里提供了几个涉及到热现象的直接耦合场分析。热—结构:热轧铝板铝板的温度将影响材料弹塑性特性和热应变。机械和热载荷使得板产生大应变。新的热分析必须计入形状改变。结构-热耦合分析直接方法-例题(续)热-电磁场:钢芯的热传递传导线圈在钢芯周围产生电磁场。该区域的交变电流在钢芯内产生焦耳热。钢芯在热作用下产生高温,由于温度变化梯度很大,因此必须考虑钢芯材料特性随温度的变化。而且,磁场变化的强度和方向都会改变。象这种电磁场谐波分析,只要得出磁向量势{A},就能计算出电流密度向量{J}。它用来计算下式中的焦耳热:结构-热耦合分析直接方法-前处理在直接耦合场分析的前处理中要记住以下方面:使用耦合场单元的自由度序列应该符合需要的耦合场要求。模型中不需要耦合的部分应使用普通单元。仔细研究每种单元类型的单元选项,材料特性合实常数。耦合场单元相对来说有更多的限制(如,PLANE13不允许热质量交换而PLANE55单元可以,SOLID5不允许塑性和蠕变而SOLID45可以)。不同场之间使用统一的单位制。例如,在热-电分析中,如果电瓦单位使用瓦(焦耳/秒),热单位就不能使用Btu/s。由于需要迭代计算,热耦合场单元不能使用子结构。结构-热耦合分析直接方法-加载,求解,后处理在直接方法的加载,求解,后处理中注意以下方面:如果对带有温度自由度的耦合场单元选择瞬态分析类型的话:瞬态温度效果可以在所有耦合场单元中使用。瞬态电效果(电容,电感)不能包括在热-电分析中(除非只是TEMP和VOLT自由度被激活)。带有磁向量势自由度的耦合场单元可以用来对瞬态磁场问题建模(如,SOLID62).带有标量势自由度的单元只能模拟静态现象(SOLID5)。学习每种单元的自由度和允许的载荷。耦合场单元允许的相同位置(节点,单元面等)施加多种类型的载荷(D,F,SF,BF)。耦合场分析可以使高度非线性的。考虑使用Predictor和LineSearch功能改善收敛性。考虑使用Multi-Plots功能将不同场的结果同时输出到多个窗口中。结构-热耦合分析间接方法间接方法用于求解间接耦合场问题。它需要连续进行两个单场的分析(而不是同时),第一种分析的结果作为第二种分析的载荷。如:热结构热结构许多问题需要热到结构的耦合(温度引起的热膨胀)但反之不可

结构到热耦合是可以忽略的(小的应变将不对初始的热分析结果产生影响)在实用问题中,这种方法比直接耦合要方便一些,因为分析使用的是单场单元,不用进行多次迭代计算。结构-热耦合分析间接方法-例题叶片和盘中的温度会产生热膨胀应变。这会显著影响应力状态。由于应变较小,而且接触区域是平面对平面的,因此温度解不用更新。DiskSectorAirfoilPlatformRoot下面是有关热现象的一些可以使用间接耦合方法进行分析的例子:热-结构: 透平机叶片部件分析这种分析又叫做热应力分析。这合非常典型的分析类型将在后面有更加详细的描述。结构-热耦合分析间接方法-例题(续)热-电: 嵌于玻璃盘的电热器嵌于玻璃盘的电热器中有电流。这使得电线中有焦耳热产生。

由于热效应,电线和盘中温度增加。由于系统的温度变化不大,热引起的电阻变化被忽略。因此,电流也是不变的。当电压{V}求解后,可以用于下式中求解焦耳热:+V-结构-热耦合分析间接方法-过程在ANSYS中由两个基本方法进行序贯耦合场分析。它们主要区别在于每个场的特性是如何表示的:物理环境方法-单独的数据库文件在所有场中使用。用多个物理环境文件来表示每个场的特性。手工方法-多个数据库被建立和存储,每次研究一种场。每个场的数据都存储在数据库中。在下面我们将对每种方法和其优点加以讨论。结构-热耦合分析物理环境为了自动进行序贯耦合场分析,ANSYS允许用户在一个模型中定义多个物理环境。一个物理环境代表模型在一个场中的行为特性。物理环境文件是ASCII码文件,包括以下内容:单元类型和选项节点和单元坐标系耦合和约束方程分析和载荷步选项载荷和边界条件GUI界面和标题在建立带有物理环境的模型时,要选择相容于所有物理场的单元类型。例如,8节点的热块单元与8节点的结构块单元相容,而不与10节点结构单元相容:yesno在使用降阶单元形状时要注意。具有相同基本形状的单元不一定支持该种单元的降阶模式。结构-热耦合分析物理环境(续)除了相似的单元阶次(形函数阶次)和形状,绝大多数单元需要相似的单元选项(如平面2-D单元的轴对称)以满足相容性。但是,许多载荷类型不需要环境之间完全相容。例如,8节点热体单元可以用来给20节点结构块单元提供温度。许多单元需要特殊单选项设置来与不同阶次的单元相容。单元属性号码(MAT,REAL,TYPE)在环境之间号码必须连续。对于在某种特殊物理环境中不参与分析的区域使用空单元类型(type#zero)来划分

(如,在电磁场分析中需要对物体周围单空气建模而热和结构分析中不用)。结构-热耦合分析同时,确认网格划分的密度在所有物理环境中都能得到可以接收的结果。如:物理环境方法允许载一个模型中定义最多9种物理环境。这种方法当考虑多于两个场的相互作用时或不能在每个环境中使用不同的数据库文件的情况下比较适用。要得到关于间接问题的物理环境方法,可以参考《耦合场分析指南》的第二章。物理环境(续)这种划分方法在热分析中可以得到满意的温度分布,但......这样的网格密度在结构分析中才能得到准确的结果。结构-热耦合分析热-应力分析在本章的后面部分,我们考虑一种最常见的间接耦合分析;热-应力分析。热-应力分析是间接问题,因为热分析得到的温度对结构分析的应变和应力有显著的影响,但结构的响应对热分析结果没有很大的影响。因为热-应力分析只涉及到两个场之间的连续作用,我们可以使用手工方法(MM)进行顺序耦合而不必使用相对复杂的物理环境方法

(PEM)。这里是手工方法的几个优点和缺点:优点:在建立热和结构模型时有较少的限制。例如,属性号码和网格划分在热和结构中可以不同。PEM需要所有的模型都是一致的。MM方法是简单而且适应性强的,ANSYS和用户都对它进行了多年的检验。缺点:用户必须建立热和结构数据库和结果文件。这与单独模型的PEM方法对比,需要占用较多的存储空间。MM如果再考虑其它场时会比较麻烦。结构-热耦合分析基本过程在热-应力分析中,由温度求解得到的节点温度

将在结构分析中用作体载荷。当在顺序求解使用手工方法时将热节点温度施加到结构单元上有两种选项。选择的原则在于结构模型和热模型是否有相似的网格划分:

如果热和结构的单元有相同

的节点号码...1热模型自动转换为结构模型,使用ETCHG命令(见相应单元表格)。温度可以直接从热分析结果文件读出并使用LDREAD

命令施加到结构模型上。结构-热耦合分析基本过程(续) 如果热和结构模型的网格有不同

的节点号码...结构单元与热模型网格划分不同,为了得到更好的结构结果。结构体载荷是从热分析中映射过来。这需要一个较复杂的过程,使用BFINT

命令对热结果插值(不能使用物理环境)。

下面对比一下使用相同或不同网格的区别。2结构-热耦合分析热-应力分析流程图相同网格?5A.将热模型转换为结构模型(ETCHG)5a.清除热网格并建立结构网格Yes

(Option1)No

(Option2)5B.读入热载荷(LDREAD)5b.写节点文件(NWRITE)并存储结构文件5c.读入热模型并进行温度插值

(BFINT)5d.读入结构模型并读入体载荷文件(/INPUT)6.指定分析类型,分析选项和载荷步选项7.指定参考温度并施加其它结构载荷8.存储并求解9.后处理结束

1.建立,加载,求解热模型2.后处理确定要传到结构的温度3.设置GUI过滤,改变工作文件名并删除热载荷,

CEs,CPs4.定义结构材料特性开始

结构-热耦合分析流程细节1. 建立热模型并进行瞬态或稳态热分析,得到节点上的温度。2. 查看热结果并确定大温度梯度的时间点(或载荷步/子步)。3a.将GUI过滤设置为“Structural”和“Thermal”。3b. 改变工作文件名。213b下面是热-应力分析的每步细节。3a结构-热耦合分析流程细节(续)3c.删除所有热载荷3d.删除耦合序列和约束方程3d3c结构-热耦合分析流程细节(续)4.定义结构材料特性,包括热膨胀系数(ALPX)。4非线性材料特性如塑性和蠕变在数据表格下定义结构-热耦合分析流程细节(续)下面两页(步骤5A和5B)假设热网格在结构中同样使用

(选项1).

5A.改变单元类型,从热到结构(ETCHG命令):检查实常数和单元选项是否正确。5AResetsoptionsRetainsoptions结构-热耦合分析流程细节(续)5B.从热分析中施加温度体载荷(LDREAD命令):9.Solvecurrentloadstep5B确定温度结果文件确定结果的时间和子步结构-热耦合分析流程细节(续)下面六页(步骤5a-5d)假设热网格不在结构模型中使用(选项2)。5a. 清除热网格...

删除热单元类型并定义结构单元类型...

改变网格控制并划分结构模型。结构-热耦合分析流程细节(续)5b. 选择温度体载荷的所有节点并写入节点文件。5b指定节点文件名结构-热耦合分析流程细节(续)5c. 存储结构模型,将工作文件名改为热工作文件名,读入热数据库...

进入通用后处理器...

结构-热耦合分析流程细节(续)读入需要的结果序列,并...

进行体载荷插值:节点文件名写出的载荷文件名用于写多个载荷文件使用体-体结构-热耦合分析 有些情况下热网格和结构网格并不完全一致。这时,ANSYS对超过热模型的结构模型节点进行体载荷插值。

缺省的判断准则是看插值的结构节点到热单元边界的距离是否小于单元边长的0.5倍。一个在5.4版没有写入手册的特性允许用户控制该公差数值:

本命令没有GUI路径。因此,命令只能在输入窗口中手工输入。BFINT,Fname1,Ext1,Dir1,Fname2,Ext2,Dir2,KPOS,Clab,KSHS使用BFINT插值,

EXTOL例如:如果结构网格包括在热模型中不存在的圆角时,许多节点将落在热模型的外面。如果圆角足够大而且热模型足够细致,圆角区域的载荷将不能写出。Usingthedefaulttolerance,thesetwonodeswouldnotbeassignedaload热网格结构网格边界结构-热耦合分析流程细节(续)5d.退出通用后处理器,将工作文件名改为结构工作文件名,读入结构数据库...

进入求解器...

读入载荷文件施加温度载荷:结构-热耦合分析流程细节(续)6a. 定义结构分析类型

(缺省为静态)6b. 指定分析选项(如求解器选项)6c. 指定载荷步选项

(如,输出控制)6a6b6c结构-热耦合分析流程细节(续)7a. 设置求解热膨胀时自由应变参考温度(TREF):7结构-热耦合分析流程细节(续)7b. 施加其它结构载荷。8. 存储模型并求解当前载荷步。7b989.结果后处理:结构-热耦合分析ANSYS流-固耦合分析ANSYS流-固耦合分析ANSYS流-固耦合分析ANSYS流-固耦合分析ANSYS流-固耦合分析ANSYS流-固耦合分析ANSYS流-固耦合分析问题概述在这个教程中,运用一个简单的摆动板例题来解释怎样建立以及模拟流体-结构相互作用的问题。其中流体模拟在ANSYSCFX求解器中运行,而用ANSYS软件包中的FEA来模拟固体问题。模拟流固相互作用的整个过程中需要两个求解器的耦合运行,ANSYS-MultiField求解器提供了耦合求解的平台。ANSYS流-固耦合分析示例模拟中固体问题的描述开始模拟运行ANSYSWorkbench点击EmptyProject将出现Project界面,在此界面中有一个一个未存储的Project选择File>Save把目录设在你的工作目录,文件名设为OscillatingPlate点击Save在Project界面左边工作面板的LinktoGeometryFile下,点击Browse,打开所提供的OscillatingPlate.agdb文件确认OscillatingPlate.agdb被选(高亮显示),点击NewsimulationANSYS流-固耦合分析示例模拟中固体问题的描述建立固体材料当模拟界面展开,在模拟界面左边的目录树中展开Geometry选择Solid,在底下Details窗口中,选择Material紧连材料名StructuralSteel,用鼠标选择NewMaterial当EngineeringData窗口出现,鼠标右击NewMaterial,并重命名为Plate设置Young’sModulus(杨氏模量)为2.5e06[Pa],Poisson’sRatio(泊松比)为0.35,Density(密度)为2550[kgm^-3]点击位于Workbench界面上方的Simulation以回到模拟界面ANSYS流-固耦合分析示例模拟中固体问题的描述基本分析设置从工具栏选择NewAnalysis>TransientStress选择AnalysisSettings,在Details窗口,设置AutoTimeStepping为off设置TimeStep为0.1[s]在整个窗口底边靠右的TabularData面板,设置EndTime为5.0ANSYS流-固耦合分析示例模拟中固体问题的描述—加入载荷

固定支撑:为确保薄板的底部固定于平板,需要设置固定支撑条件。右击目录树中TransientStress,在快捷菜单中选择Insert>FixedSupport用旋转键旋转几何模型,以便可以看见模型底面(low-y),然后选择并点击底面(low-y)在Details窗口,选择Geometry,然后点击NoSelection使Apply按钮出现(如果需要)。点击Apply以设置固支。ANSYS流-固耦合分析示例流固界面右击目录树中TransientStress,在快捷菜单中选择Insert>FluidSolidInterface用旋转键旋转几何模型,以便可以方便的通过钮在流固界面上选择三个面(low-x,high-yandhigh-xfaces),注意这样会自动生成1个流固界面。ANSYS流-固耦合分析示例压力加载右击目录树中TransientStress,在快捷菜单中选择Insert>Pressure在Geometry中选择low-x面在Details窗口,选择Magnitude,用出现的箭头选择Tabular(Time)在整个视窗的右底边TabularData面板,在表中相对应于时间为0[s]设置压力为100[pa]表中需要继续输入两排参数,100[pa]对应于0.499[s],0[pa]对应于0.5[s]模拟中固体问题的描述—加入载荷ANSYS流-固耦合分析示例模拟中固体问题的描述—记录ANSYS输入文件

现在,模拟设置已经完成。在Simulation中ANSYSMultiField并不运行,因此用求解器按钮并不能得到结果然而,在目录树中的高亮Solution中,选择Tools>WriteANSYSInputFile,把结果写进文件OscillatingPlate.inp网格是自动生成的,如果想检查,可以在目录树中选择Mesh保存Simulation数据,返回OscillatingPlate[Project]面板,存储ProjectANSYS流-固耦合分析示例创建一个新的模拟:开始ANSYSCFX-Pre.选择File>NewSimulation.选择General并点击OK.选择File>SaveSimulationAs.在Filename栏,敲入OscillatingPlate.点击Save.设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiFieldANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField输入网格右击Mesh并旋转ImportMesh.选择提供的网格文件OscillatingPlate.gtm.点击Open.ANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField设置仿真类型:选择Insert>SimulationType.应用以下设置:点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField建立流体物质1.选择Insert>Material.2.把新物质名定义为Fluid.3.应用以下设置4.点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField

创建域:为了使ANSYSSolver能够把网格变形信息传递给CFXSolver,在CFX中必须激活网格移动。重命名DefaultDomain为OscillatingPlate,并打开进行编辑应用以下设置点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField创建边界条件流体外部边界创建一个新边界条件,命名为Interface.应用以下设置点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField对称边界条件创建一个新边界条件,命名为Sym1.应用以下设置点击OK创建一个新边界条件,命名为Sym2应用以下设置点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField设置初始值点击GlobalInitialization应用以下设置点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField设置求解器控制点击SolverControl应用以下设置点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField设置输出控制点击OutputControl点击TrnResults键创建一个瞬态结果,用默认的文件名对TransientResults1应用以下设置点击Monitor键选择MonitorOptionsANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField在MonitorPointsandExpressions下点击Addnewitem,采用默认的名字设置Option为CartesianCoordinates设置OutputVariablesList为TotalMeshDisplacementX设置CartesianCoordinates为[0,1,0]点击OKANSYS流-固耦合分析示例设置流体问题、在ANSYSCFX-Pre中设置ANSYSMultiField输出求解器文件(.def)点击WriteSolverFile如果PhysicsValidationSummary对话框出现,点击Yes以继续应用以下设置确选择是StartSolverManager,点击Save如果发现文件已经存在,点击Overwrite退出ANSYSCFX-Pre,自己决定是否存储模拟文件(.cfx)ANSYS流-固耦合分析示例通过ANSYSCFX-SolverManager获得结果ANSYSMultifieldsimulation的运行需要CFX和ANSYS联合求解确认DefineRun

对话框出现在MultiField键,确认ANSYS输入文件地址是正确的确认ANSYSInstallRoot

设置是正确的点击StartRunANSYS流-固耦合分析示例通过ANSYSCFX-SolverManager获得结果ANSYS输出文件点击UserPoints键,观察薄板上部随着求解怎样变形当求解完成,ANSYSCFX-SolverManager会弹出一个对话框通知你,点击Yes以继续如果在standalone模式下运行ANSYSCFX-Solver,关闭ANSYSCFX-SolverManagerANSYS流-固耦合分析示例通过ANSYSCFX-Post观察结果在固体薄板上观察结果显示BoundaryANSYS(在ANSYS>DomainANSYS中)对BoundaryANSYS进行如下设置点击Apply选择Tools>TimestepSelector,打开TimestepSelector对话框选择value值为1[s],点击ApplyANSYS流-固耦合分析示例通过ANSYSCFX-Post观察结果相应的瞬态结果被加载,可看到网格在CFX和ANSYS区中移动去除BoundaryANSYS复选框的选择创建等值线,设置Locations为BoundaryANSYS和Sym2,设置Variable为TotalMeshDisplacement,点击Apply打开TimestepSelector对话框,选择value值为1.1[s]这样可以验证TotalMeshDisplacement在CFX和ANSYS区域中是连续变化的ANSYS流-固耦合分析示例通过ANSYSCFX-Post观察结果接下来打开TimestepSelector对话框,选择value值为1.1[s]置鼠标于浏览器中背景颜色显示的地方,右击,选择Deformation>Auto为真实的反映变形,右击,选择Deformation>TrueScaleANSYS流-固耦合分析示例通过ANSYSCFX-Post观察结果创建动画去除Contour1复选框选择显示Sym2对Sym2应用以下设置点击Apply创建一个矢量图,设置Locations为Sym1,设置Variable为Velocity,设置Colour为Constant并为黑色,点击ApplyANSYS流-固耦合分析示例通过ANSYSCFX-Post观察结果显示BoundaryANSYS,设置Color为constantblue.右击浏览器的空白区域,选择PredefinedCamera>ViewTowards-Z,放大薄板以清晰的观察点击Animation,动画对话框将出现在动画对话框点击,创建KeyframeNo1在KeyframeCreationandEditing列表突出KeyframeNo1,然后#ofFrames设为48在时间步数选择器加载最后一步,value为50点击,创建KeyframeNo2点击MoreAnimationOptions,展开Animation对话框ANSYS流-固耦合分析示例通过ANSYSCFX-Post观察结果点击Options钮在Options上,设置MPEGSize为720X480(NTSC)点击Advanced键,然后设置Quality为Custom去除VariableBitRate,设置BitRate为3000000点击OK选择SaveMPEG点击Browse,设置MPEG文件存储路径点击SaveANSYS流-固耦合分析示例通过ANSYSCFX-Post观察结果点击Beginning

以加载,等待加载点击Playtheanimation完成后,退出ANSYSCFX-PostANSYS流-固耦合分析示例安全阀基本知识如果压力容器(设备/管线等)压力超过设计压力…1.尽可能避免超压现象堵塞(BLOCKED)火灾(FIRE)热泄放(THERMALRELIEF)如何避免事故的发生?2.使用安全泄压设施爆破片安全阀如何避免事故的发生?01安全阀的作用就是过压保护!一切有过压可能的设施都需要安全阀的保护!这里的压力可以在200KG以上,也可以在1KG以下!设定压力(setpressure)安全阀起跳压力背压(backpressure)安全阀出口压力超压(overpressure)表示安全阀开启后至全开期间入口积聚的压力.几个压力概念弹簧式先导式重力板式先导+重力板典型应用电站锅炉典型应用长输管线典型应用罐区安全阀的主要类型02不同类型安全阀的优缺点结构简单,可靠性高适用范围广价格经济对介质不过分挑剔弹簧式安全阀的优点预漏--由于阀座密封力随介质压力的升高而降低,所以会有预漏现象--在未达到安全阀设定点前,就有少量介质泄出.100%SEATINGFORCE75502505075100%SETPRESSURE弹簧式安全阀的缺点过大的入口压力降会造成阀门的频跳,缩短阀门使用寿命.ChatterDiscGuideDiscHolderNozzle弹簧式安全阀的缺点弹簧式安全阀的缺点=10090807060500102030405010%OVERPRESSURE%BUILT-UPBACKPRESSURE%RATEDCAPACITY普通产品平衡背压能力差.在普通产品基础上加装波纹管,使其平衡背压的能力有所增强.能够使阀芯内件与高温/腐蚀性介质相隔离.平衡波纹管弹簧式安全阀的优点优异的阀座密封性能,阀座密封力随介质操作压力的升高而升高,可使系统在较高运行压力下高效能地工作.ResilientSeatP1P1P2先导式安全阀的优点平衡背压能力优秀有突开型/调节型两种动作特性可远传取压先导式安全阀的优点对介质比较挑剃,不适用于较脏/较粘稠的介质,此类介质会堵塞引压管及导阀内腔.成本较高.先导式安全阀的缺点重力板式产品的优点目前低压储罐呼吸阀/紧急泄放阀的主力产品.结构简单.价格经济.重力板式产品的缺点不可现场调节设定值.阀座密封性差,并有较严重的预漏.受背压影响大.需要很高的超压以达到全开.不适用于深冷/粘稠工况.几个常用规范ASMEsectionI-动力锅炉(FiredVessel)ASMEsectionVIII-非受火容器(UnfiredVessel)API2000-低压安全阀设计(LowpressurePRV)API520-火灾工况计算与选型(FireSizing)API526-阀门尺寸(ValveDimension)API527-阀座密封(SeatTightness)介质状态(气/液/气液双相).气态介质的分子量&Cp/Cv值.液态介质的比重/黏度.安全阀泄放量要求.设定压力.背压.泄放温度安全阀不以连接尺寸作为选型报价依据!如何提供高质量的询价?弹簧安全阀的结构弹簧安全阀起跳曲线弹簧安全阀结构弹簧安全阀结构导压管活塞密封活塞导向不平衡移动副(活塞)导管导阀弹性阀座P1P1P2先导式安全阀结构先导式安全阀的工作原理频跳安全阀的频跳是一种阀门高频反复开启关闭的现象。安全阀频跳时,一般来说密封面只打开其全启高度的几分只一或十几分之一,然后迅速回座并再次起跳。频跳时,阀瓣和喷嘴的密封面不断高频撞击会造成密封面的严重损伤。如果频跳现象进一步加剧还有可能造成阀体内部其他部分甚至系统的损伤。安全阀工作不正常的因素频跳后果1、导向平面由于反复高频磨擦造成表面划伤或局部材料疲劳实效。2、密封面由于高频碰撞造成损伤。3、由于高频振颤造成弹簧实效。4、由频跳所带来的阀门及管道振颤可能会破坏焊接材料和系统上其他设备。5、由于安全阀在频跳时无法达到需要的排放量,系统压力有可能继续升压并超过最大允许工作压力。安全阀工作不正常的因素A、系统压力在通过阀门与系统之间的连接管时压力下降超过3%。当阀门处于关闭状态时,阀门入口处的压力是相对稳定的。阀门入口压力与系统压力相同。当系统压力达到安全阀的起跳压力时,阀门迅速打开并开始泄压。但是由于阀门与系统之间的连接管设计不当,造成连接管内局部压力下降过快超过3%,是阀门入口处压力迅速下降到回座压力而导致阀门关闭。因此安全阀开启后没有达到完全排放,系统压力仍然很高,所以阀门会再次起跳并重复上述过程,既发生频跳。导致频跳的原因导致接管压降高于3%的原因1、阀门与系统间的连接管内径小于阀门入口管内径。2、存在严重的涡流现象。3、连接管过长而且没有作相应的补偿(使用内径较大的管道)。4、连接管过于复杂(拐弯过多甚至在该管上开口用作它途。在一般情况下安全阀入口处不允许安装其他阀门。)导致频跳的原因B、阀门的调节环位置设置不当。安全阀拥有喷嘴环和导向环。这两个环的位置直接影响安全阀的起跳和回座过程。如果喷嘴环的位置过低或导向环的位置过高,则阀门起跳后介质的作用力无法在阀瓣座和调节环所构成的空间内产生足够的托举力使阀门保持排放状态,从而导致阀门迅速回座。但是系统压力仍然保持较高水平,因此回座后阀门会很快再次起跳。导致频跳的原因C、安全阀的额定排量远远大于所需排量。

由于所选的安全阀的喉径面积远远大于所需,安全阀排放时过大的排量导致压力容器内局部压力下降过快,而系统本身的超压状态没有得到缓解,使安全阀不得不再次起跳频跳的原因阀门拒跳:当系统压力达到安全阀的起跳压力时,阀门不起跳的现象。安全阀工作不正常的因素1、阀门整定压力过高。2、阀门内落入大量杂质从而使阀办座和导套间卡死或摩擦力过大。3、弹簧之间夹入杂物使弹簧无法被正常压缩。4、阀门安装不当,使阀门垂直度超过极限范围(正负两度)从而使阀杆组件在起跳过程中受阻。5、排气管道没有被可靠支撑或由于管道受热膨胀移位从而对阀体产生扭转力,导致阀体内机构发生偏心而卡死。安全阀拒跳的原因阀门不回座或回座比过大:安全阀正常起跳后长时间无法回座,阀门保持排放状态的现象。安全阀工作不正常的因素1、阀门上下调整环的位置设置不当。2、排气管道设计不当造成排气不畅,由于排气管道过小、拐弯过多或被堵塞,使排放的蒸汽无法迅速排出而在排气管和阀体内积累,这时背压会作用在阀门内部机构上并产生抑制阀门关闭的趋势。3、阀门内落入大量杂质从而使阀瓣座和导套之间卡死后摩擦力过大。安全阀不回座或回座比过大的因素:4、弹簧之间夹入杂物从而使弹簧被正常压缩后无法恢复。5、由于对阀门排放时的排放反力计算不足,从而在排放时阀体受力扭曲损坏内部零件导致卡死。6、阀杆螺母(位于阀杆顶端)的定位销脱落。在阀门排放时由于振动使该螺母下滑使阀杆组件回落受阻。安全阀不回座或回座比过大的因素:7、由于弹簧压紧螺栓的锁紧螺母松脱,在阀门排放时由于振动时弹簧压紧螺栓松动上滑导致阀门的设定起跳值不断减小。

8、阀门安装不当,使阀门垂直度超过极限范围(正负两度)从而使阀杆组件在回落过程中受阻。

9、阀门的密封面中有杂质,造成阀门无法正常关闭。

10、锁紧螺母没有锁紧,由于管道震动下环向上运动,上平面高于密封面,阀门回座时无法密封安全阀不回座或回座比过大的因素:谢谢观看癌基因与抑癌基因oncogene&tumorsuppressorgene24135基因突变概述.癌基因和抗癌基因的概念.癌基因的分类.癌基因产物的作用.癌基因激活的机理主要内容疾病:

——是人体某一层面或各层面形态和功能(包括其物质基础——代谢)的异常,归根结底是某些特定蛋白质结构或功能的变异,而这些蛋白质又是细胞核中相应基因借助细胞受体和细胞中信号转导分子接收信号后作出应答(表达)的产物。TranscriptionTranslationReplicationDNARNAProtein中心法规Whatisgene?基因:

—是遗传信息的载体

—是一段特定的DNA序列(片段)

—是编码RNA或蛋白质的一段DNA片段

—是由编码序列和调控序列组成的一段DNA片段基因主宰生物体的命运:微效基因的变异——生物体对生存环境的敏感度变化关键关键基因的变异——生物体疾病——死亡所以才有:“人类所有疾病均可视为基因病”之说注:如果外伤如烧伤、骨折等也算疾病的话,外伤应该无法归入基因病的行列。Genopathy问:两个不相干的人,如果他们患得同一疾病,致病基因是否相同?再问:同卵双生的孪生兄弟,他们患病的机会是否一样,命运是否相同?┯┯┯┯

ATGC

TACG

┷┷┷┷┯┯┯┯┯

ATAGC

TATCG

┷┷┷┷┷┯┯┯┯

ATGC

TACG

┷┷┷┷┯┯┯

AGC

TCG

┷┷┷┯┯┯┯

ACGC

TGCG

┷┷┷┷┯┯┯┯

ATGC

TACG

┷┷┷┷增添缺失替换DNA分子(复制)中发生碱基对的______、______

,而引起的

的改变。替换增添缺失基因结构基因变异的概念:英语句子中的一个字母的改变,可能导致句子的意思发生怎样的变化?可能导致句子的意思不变、变化不大或完全改变THECATSATONTHEMATTHECATSITONTHEMATTHEHATSATONTHEMATTHECATONTHEMAT同理:替换、增添、缺失碱基对,可能会使性状不变、变化不大或完全改变。基因的结构改变,一定会引起性状的改变??原句:1.基因多态性与致病突变基因变异与疾病的关系2.单基因病、多基因病3.疾病易感基因

基因多态性polymorphism是指DNA序列在群体中的变异性(差异性)在人群中的发生概率>1%(SNP&CNP)<1%的变异概率叫做突变基因多态性特定的基因多态性与疾病相关时,可用致病突变加以描述SNP:散在单个碱基的不同,单个碱基的缺失、插入和置换。

CNP:DNA片段拷贝数变异,包括缺失、插入和重复等。同义突变、错义突变、无义突变、移码突变

致病突变生殖细胞基因突变将突变的遗传信息传给下一代(代代相传),即遗传性疾病。体细胞基因突变局部形成突变细胞群(肿瘤)。受精卵分裂基因突变的原因物理因素化学因素生物因素基因突变的原因(诱发因素)紫外线、辐射等碱基类似物5BU/叠氮胸苷等病毒和某些细菌等自发突变DNA复制过程中碱基配对出现误差。UV使相邻的胸腺嘧啶产生胸腺嘧啶二聚体,DNA复制时二聚体对应链空缺,碱基随机添补发生突变。胸腺嘧啶二聚体胸腺嘧啶胸腺嘧啶紫外线诱变物理诱变(physicalinduction)

5溴尿嘧啶(5BU)与T类似,多为酮式构型。间期细胞用酮式5BU处理,5BU能插入DNA取代T与A配对;插入DNA后异构成烯醇式5BU与G配对。两次DNA复制后,使A/T转换成G/C,发生碱基转换,产生基因突变。化学诱变(chemicalinduction)碱基类似物(baseanalogues)诱变AT5-BUA5-BUAAT5-BU5-BU(烯醇式)

(酮式)GGC1.生物变异的根本来源,为生物进化提供了最初的原始材料,能使生物的性状出现差别,以适应不同的外界环境,是生物进化的重要因素之一。2.致病突变是导致人类遗传病的病变基础。基因突变的意义概述:肿瘤细胞恶性增殖特性(一)肿瘤细胞失去了生长调节的反馈抑制正常细胞受损,一旦恢复原状,细胞就会停止增殖,但是肿瘤细胞不受这一反馈机制抑制。(二)肿瘤细胞失去了细胞分裂的接触抑制。正常细胞体外培养,相邻细胞相接触,长在一起,细胞就会停止增殖,而肿瘤细胞生长满培养皿后,细胞可以重叠起生长。(三)肿瘤细胞表现出比正常细胞更低的营养要求。(四)肿瘤细胞生长有一种自分泌作用,自己分泌生长需要的生长因子和调控信号,促进自身的恶性增殖。Whatisoncogene?癌基因——是基因组内正常存在的基因,其编码产物通常作为正调控信号,促进细胞的增殖和生长。癌基因的突变或表达异常是细胞恶性转化(癌变)的重要原因。——凡是能编码生长因子、生长因子受体、细胞内信号转导分子以及与生长有关的转录调节因子等的基因。如何发现癌基因的呢?11910年,洛克菲勒研究院一个年轻的研究员Rous发现,鸡肉瘤细胞裂解物在通过除菌滤器以后,注射到正常鸡体内,可以引起肉瘤,首次提出鸡肉瘤可能是由病毒引起的。0.2m孔径细菌过不去但病毒可以通过从病毒癌基因到细胞原癌基因的研究历程:Roussarcomavirus,RSVthefirstcancer-causingretrovirus1958年,Stewart和Eddy分离出一种病毒,注射到小鼠体内可以引起肝脏、肾脏、乳腺、胸腺、肾上腺等多种组织器官的肿瘤,因而把这种病毒称为多瘤病毒。50年代末、60年代初,癌病毒研究成了一个极具想像力的研究领域,主流科学家开始进入癌病毒研究领域polyomavirus这期间,Temin发现RSV有不同亚型,且引起细胞恶变程度不同,推测RNA病毒将其遗传信息传递给了正常细胞的DNA。这与Crick提出的中心法则是相违背的让事实屈从于理论还是坚持基于实验的结果?VSTemin发现逆转录酶,1975年获诺贝尔奖TeminCrickTemin的实验设计:实验设计简单而巧妙:将合成DNA所需的“原料”,即A、T、C、G四种脱氧核苷酸,与破坏了外壳的RSV一起在体外40℃的条件下温育一段时间结果在试管里获得了一种新合成的大分子,它不能被RNA酶破坏,但却可以被DNA酶所分解,证明这种新合成的大分子是DNA用RNA酶预先破坏RSV的RNA,再重复上述的试验,则不能获得这种大分子,说明这个DNA大分子是以RSV的RNA为模板合成的1969年,一个日本学者里子水谷来到Temin的实验室,这是一个非常擅长实验的年轻科学家。按Temin的设想,他们开始寻找RSV中存在“逆转录酶”的证据DNA

RNA

ProteinTranscriptionTranslationReplicationReplicationRe-Transcription修正中心法规据说,1975年Temin因发现逆转录酶而获诺贝尔奖时,Bishop懊恼不已,因为早在1969年他就认为Temin的RNADNA的“前病毒理论”有可能是正确的,并且也进行了一些实验,但不久由于资深同事的规劝而放弃了这方面的努力。但Bishop马上意识到:逆转录酶的发现为逆转录病毒致癌的研究提供了一条新途径。一个RSV,三个诺贝尔奖!!!1989年,UCSF的Bishop和Varmus根据逆转录病毒的复制机制发现了细胞癌基因,并获诺贝尔奖。Cellularoncogene启示:Perutz说:“科学创造如同艺术创造一样,都不可能通过精心组织而产生”Bishop说:“许多人引以为豪的是一天工作16小时,工作安排要以分秒计……可是工作狂是思考的大敌,而思考则是科学发现的关键”Perutzsharedthe1962NobelPrizeforChemistrywithJohnKendrew,fortheirstudiesofthestructuresofhemoglobinandglobularproteins科学的本质和艺术一样,都需要直觉和想像力请给自己一些思考的时间吧!癌基因的分类目前对癌基因尚无统一分类的方法,一般有下面3种分类方法:一、按结构特点分(6)类(一)src癌基因家族(二)ras癌基因家族(三)sis癌基因家族(四)myc癌基因家族(五)myb癌基因家族(六)其它:如fos,erb-A等。三、按细胞增殖调控蛋白特性分成(4)类(一)生长因子(二)受体类(三)细胞内信号转换器(四)细胞核因子二、按产物功能分(8)类(一)生长因子类(二)酪氨酸蛋白激酶(三)膜相关G蛋白(四)受体,无蛋白激酶活性(五)胞质丝氨酸-苏氨酸蛋白激酶(六)胞质调控因子(七)核反式调控因子(八)其它:db1、bcl-2癌基因产物参与信号转导

胞外信号作用于膜表面受体→胞内信使物质的生成便意味着胞外信号跨膜传递的完成。胞内信使至少有:cAMP(环磷酸腺苷)IP3(三磷酸肌醇)PG(前列腺素)cGMP(环磷酸鸟苷)DG(二酰基甘油)Ca2+(钙离子)CAM(钙调素)主要机制是通过蛋白激酶活化引起底物蛋白一连串磷酸化的生物信号反应过程,跨膜机制涉及到:(一)质膜上cAMP信使系统(二)质膜上肌醇脂质系统这两个系统都是由受体鸟苷酸调节蛋白(GTP-regulatoryprotein,G蛋白)和效应酶(腺苷酸环化酶磷脂酶等)组成,有相似的信号转导过程:即受体活化后引起GTP与不同G蛋白结合活化和抑制效应酶从而影响胞内信使产生而发生不同的调控效应。(三)受体操纵的离子通道系统(四)受体酪氨酸蛋白激酶的转导

(一)获得性基因病

(acquiredgeneticdisease)例如:病毒感染激活原癌基因癌基因活化的机制

(二)染色体易位和重排使无活性的原癌基因转位至强启动子或增强子附近而被活化。与基因脆性位点相关。(三)基因扩增(四)点突变三、癌基因的产物与功能(一)癌基因产物作用的一般特点1.目前发现c-onc均为结构基因.2.癌基因产物可分布在膜质核也可分泌至胞外.(二)癌基因产物分类1.细胞外生长因子:TGF-b2.跨膜生长因子受体:MAPK3.细胞内信号转导分子:Gprotein/Ras4.核内转录因子

(三)癌基因产物的协同作用实验证明,用ras或myc分别转染细胞,可使细胞长期增殖,但不能转化成癌细胞,在裸鼠体内也不能形成肿瘤。但用ras+myc同时转染细胞,则使细胞转化成癌细胞。说明:致癌至少需要2种或以上的onc协同作用,2种onc在2条通路上发挥作用,由于细胞增殖调控是多因子,多阶段影响的结果。而影响增殖分化的onc达几十种之多,所以大多数人认为:癌发生是多阶段多步骤的。Whatistumorsuppressorgene?肿瘤抑制基因(抗癌基因、抑癌基因)——是调节细胞正常生长和增殖的基因。当这些基因不能表达,或其产物失去活性时,细胞就会异常生长和增殖,最终导致细胞癌变。反之,若导入或激活它则可抑制细胞的恶性表型。——癌基因与抑癌基因相互制约,维持细胞增殖正负调节信号的相对稳定。影响1岁的儿童“二次打击”学说两个等位基因同时突变视网膜母细胞瘤(Retinoblastoma)RB基因变异(13号染色体)

(1)脱磷酸化Rb蛋白(活性)与转录因子E2F结合,抑制基因的转录活性(2)磷酸化Rb蛋白(失活)与E2F解离,释放E2F(3)E2F启动基因转录(4)细胞进入增生阶段(G1S)因此,Rb蛋白在控制细胞生长方面发挥重要作用一旦Rb基因突变可使细胞进入过度增生状态RB基因的功能等位基因(allele)例如:花颜色基因位于一对同源染色体的同一位置上、控制相对性状的两个的基因叫等位基因(allele)一对相同的等位基因称纯合等位基因

一对不同的等位基因称杂合等位基因

显性基因隐性基因完全显性不完全显性共显性问:女性的两条X染色体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论