2022-2023学年湖南省永州市浯溪镇第四中学高二数学理联考试卷含解析_第1页
2022-2023学年湖南省永州市浯溪镇第四中学高二数学理联考试卷含解析_第2页
2022-2023学年湖南省永州市浯溪镇第四中学高二数学理联考试卷含解析_第3页
2022-2023学年湖南省永州市浯溪镇第四中学高二数学理联考试卷含解析_第4页
2022-2023学年湖南省永州市浯溪镇第四中学高二数学理联考试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年湖南省永州市浯溪镇第四中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.有一段演绎推理是这样的:“幂函数在(0,+∞)上是增函数;已知是幂函数;则在(0,+∞)上是增函数”的结论显然是错误的,这是因为(

)A.大前提错误

B.小前提错误

C.推理形式错误

D.非以上错误参考答案:A当时,幂函数在上是增函数,当时,幂函数在上是减函数,据此可知题中的大前提是错误的.

2.已知函数在处的导数为1,则

(

)

A.3

B.

C.

D.参考答案:B3.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能载一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为()A.420 B.240 C.360 D.540参考答案:A【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、5个花池用了5种颜色的花卉,将5种颜色的花卉全排列即可,②、5个花池用了4种颜色的花卉,则2、4两个花池栽同一种颜色的花,或者3、5两个花池栽同一种颜色的花,③、5个花池用了3种颜色的花卉,4号与2号同色,3号与5号同色,分别求出每一种情况的栽种方案,由加法原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、5个花池用了5种颜色的花卉,将5种颜色的花卉全排列即可,有A55=120种情况,②、5个花池用了4种颜色的花卉,则2、4两个花池栽同一种颜色的花,或者3、5两个花池栽同一种颜色的花,则有2A54=240种情况,③、5个花池用了3种颜色的花卉,在5种颜色的花卉中任选3种,安排在1、2、3号花池,4号与2号同色,3号与5号同色,则有A53=60种情况,则有120+240+60=420种不同的栽种方案;故选:A.【点评】本题主要考查排列、组合的应用,注意5种颜色的花卉不一定用完,需要分情况讨论.4.函数的最大值为

)A.

B.

C.

D.

参考答案:A略5.若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,则原△ABC的面积为A.a2

B.a2

C.a2

D.a2参考答案:C略6.过双曲线的左焦点,作圆的切线,切点为,延长交双曲线右支于点,若是的中点,则双曲线的离心率为(

A.

B.

C.

D.参考答案:A略7.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为(

)A.12 B.18 C.24 D.32参考答案:B8.函数y=xcosx-sinx在下面哪个区间内是增函数(

A.(

B.

C.

D.参考答案:B9.正方体的边长为2,且它的8个顶点都在同一个球面上,则这个球的表面积为()A.12π B.﹣125π C.0 D.以上都不对参考答案:A【考点】球的体积和表面积;球内接多面体.【分析】由棱长为2的正方体的八个顶点都在同一个球面上,知球半径R=,由此能求出球的表面积.【解答】解:∵棱长为2的正方体的八个顶点都在同一个球面上,∴球半径R=,∴球的表面积S=4π()2=12π.故选A.10.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于()参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.若复数在复平面内对应的点在第三象限,则整数a的取值为_____.参考答案:0【分析】将复数写成a+bi(a,b∈R)的形式,然后由复数对应的点在第三象限,列出不等式,可得a的取值.【详解】复数,若复数在复平面内对应的点在第三象限,则,解得,又a为整数,则a=0,故答案为:0【点睛】本题考查复数的乘法运算和复数的几何意义,属于简单题.12.

。参考答案:12略13.△ABC中,AB=,AC=1,B=30°,则△ABC的面积等于

.参考答案:

或【考点】解三角形.【分析】由已知,结合正弦定理可得,从而可求sinC及C,利用三角形的内角和公式计算A,利用三角形的面积公式进行计算可求【解答】解:△ABC中,c=AB=,b=AC=1.B=30°由正弦定理可得b<c∴C>B=30°∴C=60°,或C=120°当C=60°时,A=90°,当C=120°时,A=30°,故答案为:或14.平面ABC,M、N分别为PC、AB的中点,使得的一个条件为_____________________________;参考答案:15.已知f(x)=xex,g(x)=﹣(x+1)2+a,若?x1,x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围是

.参考答案:a≥.

【考点】函数在某点取得极值的条件.【分析】?x1,x2∈R,使得f(x2)≤g(x1)成立,等价于f(x)min≤g(x)max,利用导数可求得f(x)的最小值,根据二次函数的性质可求得g(x)的最大值,代入上述不等式即可求得答案.【解答】解:?x1,x2∈R,使得f(x2)≤g(x1)成立,等价于f(x)min≤g(x)max,f′(x)=ex+xex=(1+x)ex,当x<﹣1时,f′(x)<0,f(x)递减,当x>﹣1时,f′(x)>0,f(x)递增,所以当x=﹣1时,f(x)取得最小值f(x)min=f(﹣1)=﹣;当x=﹣1时g(x)取得最大值为g(x)max=g(﹣1)=a,所以﹣≤a,即实数a的取值范围是a≥.故答案为:a≥.16.已知是虚数单位,=

.(用的形式表示,)参考答案:略17.等比数列中,已知对任意正整数,…,则…等于____________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)设命题p:;命题q:(2a+1)x+,若的必要不充分条件,求实数a的取值范围。参考答案:19.在平面直角坐标系中,的两个顶点的坐标分别为,三个内角满足.(1)若顶点的轨迹为,求曲线的方程;(2)若点为曲线上的一点,过点作曲线的切线交圆于不同的两点(其中在的右侧),求四边形面积的最大值.参考答案:解:(1)设△ABC的三个内角A,B,C所对的边分别为a,b,c,由正弦定理.∵,∴.∵

即.由椭圆定义知,B点轨迹是以C,A为焦点,长半轴长为2,半焦距为,短半轴长为,中心在原点的椭圆(除去左、右顶点).∴B点的轨迹方程为.(2)易知直线的斜率存在,设,,,即,因为,设点到直线的距离为,则,,,由,,,,.而,,易知,,,时取到,.20.实数m取什么数值时,复数分别是:(1)实数?(2)虚数?(3)纯虚数?(4)表示复数z的点在复平面的第四象限?参考答案:(1);(2);(3);(4).试题分析:根据复数的概念及几何意义易得.(1)当复数z是实数时,,解得;(2)当复数z是虚数时,,解得;(3)当复数z是纯虚数时,且,解得;(4)当复数z表示的点位于第四象限时,且,解得.试题解析:解:(1)当,即时,复数z是实数;(2)当,即时,复数z是虚数;(3)当,且时,即时,复数z是纯虚数;(4)当且,即时,复数z表示的点位于第四象限。考点:复数的概念及几何意义.21.在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值.参考答案:【考点】异面直线及其所成的角;直线与平面所成的角.【分析】(I)以,,为x,y,z轴建立空间直角坐标系A﹣xyz,可得和的坐标,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),由可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=,进而可得答案.【解答】解:(I)以,,为x,y,z轴建立空间直角坐标系A﹣xyz,则可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴异面直线A1B,AC1所成角的余弦值为:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),则可得,即,取x=1可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=∴直线AB1与平面C1AD所成角的正弦值为:22.已知直线l过点(2,1)和点(4,3).(Ⅰ)求直线l的方程;(Ⅱ)若圆C的圆心在直线l上,且与y轴相切于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论