版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省太原市钢华中学高一数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.以直线x±2y=0为渐近线,且截直线x﹣y﹣3=0所得弦长为的双曲线方程为()A.﹣=1 B.﹣=1 C.y2﹣=1 D.﹣y2=1参考答案:D【考点】KB:双曲线的标准方程.【分析】设双曲线方程为x2﹣4y2=λ,联立方程组,得3x2﹣24x+(36+λ)=0,由椭圆弦长公式求出λ=4,由此能求出双曲线方程.【解答】解:∵双曲线以直线x±2y=0为渐近线,∴设双曲线方程为x2﹣4y2=λ,联立方程组,消去y,得3x2﹣24x+(36+λ)=0,设直线被双曲线截得的弦为AB,且A(x1,y1),B(x2,y2),则,△=242﹣432﹣12λ>0,∴|AB|=?==,解得λ=4,∴所求双曲线方程是.故选:D.2.已知向量、满足,且,则与的夹角为()
A.
B.
C.
D.参考答案:A3.定义集合运算A
B=,设,,则集合A
B的子集个数为(
)
A.32
B.31
C.30
D.14参考答案:A略4.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是
A.4cm3
B.5cm3
C.6cm3
D.7cm3参考答案:A5.已知等比数列满足,,则(
)A.
B.
C.
D.参考答案:B考点:等比数列的通项公式.6.中,A、B的对边分别是,且,那么满足条件的
A.有一个解
B.有两个解
C.无解
D.不能确定参考答案:C7.的值等于(
)A.
B.
C.
D.参考答案:D8.在的展开式中,若第七项系数最大,则的值可能等于().A.13,14 B.14,15 C.12,13 D.11,12,13参考答案:D的展开式第七项系数为,且最大,可知此为展开式中间项,当展开式为奇数项时:,,当有偶数项时,,或,,故,,.选.9.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为(
)A.7
B.9
C.10
D.15参考答案:C略10.在△ABC中,已知A=30°,a=8,则△ABC的外接圆直径是()A.10 B.12 C.14 D.16参考答案:D【考点】HP:正弦定理.【分析】利用正弦定理即可得出.【解答】解:设△ABC的外接圆的半径为r,则2r===16,解得r=8.∴△ABC的外接圆直径为16.故选:D.【点评】本题考查了正弦定理,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,若∶∶∶∶,则_____________。参考答案:
解析:∶∶∶∶∶∶,令
12.如图为某学生10次数学考试成绩的茎叶图,则该学生10次考试的平均成绩为_________.参考答案:87略13.(3分)若函数f(x)=+a的零点是2,则实数a=
.参考答案:﹣考点: 函数零点的判定定理.专题: 计算题;函数的性质及应用.分析: 由函数f(x)=+a的零点是2知f(2)=+a=0;从而解得.解答: ∵函数f(x)=+a的零点是2,∴f(2)=+a=0;故a=﹣.故答案为:﹣.点评: 本题考查了函数的零点的应用,属于基础题.14.如果直线与圆:交于两点,且,为坐标原点,则*****参考答案:15.设表示不超过的最大整数,如,若函数,则的值域为
参考答案:{-1,0}略16.已知集合,集合B满足AUB={1,2},则集合B有____个.参考答案:4略17.给出定义:若(其中为整数),则叫做离实数最近的整数,记作.在此基础上给出下列关于函数的四个结论:①函数的定义域为,值域为;
②函数的图象关于直线对称;③函数是偶函数;④函数在上是增函数.其中正确的结论的序号是________.参考答案:①②③三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产共计老年40404080200中年80120160240600青年401602807201200小计16032048010402000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?参考答案:.解(1)用分层抽样,并按老年4人,中年12人,青年24人抽取;(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取略19.(12分)(2015秋?长沙校级期中).已知幂函数的图象关于y轴对称,且在区间(0,+∞)上是减函数,(1)求函数f(x)的解析式;(2)若a>k,比较(lna)0.7与(lna)0.6的大小.参考答案:【考点】幂函数的概念、解析式、定义域、值域;有理数指数幂的化简求值.
【专题】函数的性质及应用.【分析】(1)利用幂函数的性质,结合函数的奇偶性通过k∈N*,求出k的值,写出函数的解析式.(2)利用指数函数y=(lna)x的性质,把不等式大小比较问题转化为同底的幂比较大小,即可得出答案.【解答】解:(1)幂函数的图象关于y轴对称,所以,k2﹣2k﹣3<0,解得﹣1<k<3,因为k∈N*,所以k=1,2;且幂函数在区间(0,+∞)为减函数,∴k=1,函数的解析式为:f(x)=x﹣4.(2)由(1)知,a>1.①当1<a<e时,0<lna<1,(lna)0.7<(lna)0.6;②当a=e时,lna=1,(lna)0.7=(lna)0.6;③当a>e时,lna>1,(lna)0.7>(lna)0.6.【点评】本题是中档题,考查幂函数的基本性质,考查不等式的大小比较,注意转化思想的应用.20.(本小题满分15分)已知等比数列的前项和为,正数数列的首项为,且满足:.记数列前项和为.(Ⅰ)求的值;(Ⅱ)求数列的通项公式;(Ⅲ)是否存在正整数,且,使得成等比数列?若存在,求出的值,若不存在,说明理由.参考答案:(本小题15分)解:(Ⅰ),,………(3分)因为为等比数列所以,得………(4分)
经检验此时为等比数列.
………………(5分)
(Ⅱ)∵
∴数列为等差数列
…………(7分)又,所以所以
…………(10分)(Ⅲ)……(12分)假设存在正整数,且,使得成等比数列则,所以由得且即,所以因为为正整数,所以,此时所以满足题意的正整数存在,.…………(15分)略21.证明:参考答案:证明: 22.以下是用二分法求方程的一个近似解(精确度为0.1)的不完整的过程,请补充完整。解:设函数,其图象在上是连续不断的,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国政法大学《工程中的数值方法C》2023-2024学年第一学期期末试卷
- 郑州西亚斯学院《现代通信原理》2023-2024学年第一学期期末试卷
- 长江工程职业技术学院《公共服务质量管理》2023-2024学年第一学期期末试卷
- 消费级3D打印机打印精度改进
- 保险行业基础讲解模板
- 业务操作-房地产经纪人《业务操作》名师预测卷4
- 开学晨会发言稿
- 二零二五年政府形象广告服务合同规范
- 二零二五版国际学校外教引进与团队建设协议3篇
- 2024-2025学年新疆乌鲁木齐四十一中高二(上)期末数学试卷(含答案)
- 《道路交通安全法》课件完整版
- 向女朋友认错保证书范文
- 五分数加法和减法(课件)-数学五年级下册
- 2024年四川省绵阳市中考语文试卷(附真题答案)
- 设计材料与工艺课程 课件 第1章 产品设计材料与工艺概述
- 幼儿园反恐防暴技能培训内容
- 食品企业质检员聘用合同
- 中医诊所内外部审计制度
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年国家危险化学品经营单位安全生产考试题库(含答案)
- 护理员技能培训课件
评论
0/150
提交评论