2022-2023学年重庆市江津、巴县、长寿等七校联盟高二数学第二学期期末学业质量监测模拟试题含解析_第1页
2022-2023学年重庆市江津、巴县、长寿等七校联盟高二数学第二学期期末学业质量监测模拟试题含解析_第2页
2022-2023学年重庆市江津、巴县、长寿等七校联盟高二数学第二学期期末学业质量监测模拟试题含解析_第3页
2022-2023学年重庆市江津、巴县、长寿等七校联盟高二数学第二学期期末学业质量监测模拟试题含解析_第4页
2022-2023学年重庆市江津、巴县、长寿等七校联盟高二数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间上的最大值是()A. B. C. D.2.不等式>0的解集是A.(,) B.(4,)C.(,-3)∪(4,+) D.(,-3)∪(,)3.在△ABC中内角A,B,C所对各边分别为,,,且,则角=A.60° B.120° C.30° D.150°4.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则A.0.7 B.0.6 C.0.4 D.0.35.已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素组合,则可以组成这样的新集合的个数为()A. B. C. D.6.某车间加工零件的数量x与加工时间y的统计数据如图:现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()零件个数x(个)102030加工时间y(分钟)213039A.112分钟 B.102分钟 C.94分钟 D.84分钟7.设函数的导函数为,若是奇函数,则曲线在点处切线的斜率为()A. B.-1 C. D.8.已知则的最小值是()A. B.4 C. D.59.大学生小红与另外3名大学生一起分配到乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小红恰好分配到甲村小学的方法数为()A.3 B.18 C.12 D.610.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(2-x)f′(x)的图像如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(1)和极小值f(-1)B.函数f(x)有极大值f(1)和极小值f(2)C.函数f(x)有极大值f(2)和极小值f(1)D.函数f(x)有极大值f(-1)和极小值f(2)11.x+1A.第5项 B.第5项或第6项 C.第6项 D.不存在12.等差数列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.二、填空题:本题共4小题,每小题5分,共20分。13.位同学在一次聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品。已知位同学之间进行了次交换,且收到份纪念品的同学有人,问收到份纪念品的人数为_______14.已知函数,使在上取得最大值3,最小值-29,则的值为__________.15.已知函数的定义域是,关于函数给出下列命题:①对于任意,函数是上的减函数;②对于任意,函数存在最小值;③存在,使得对于任意的,都有成立;④存在,使得函数有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号)16.数列定义为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校高二年级成立了垃圾分类宣传志愿者小组,有7名男同学,3名女同学,在这10名学生中,1班和2班各有两名同学,3班至8班各有一名同学,现从这10名同学中随机选取3名同学,利用节假日到街道进行垃圾分类宣传活动(每位同学被选到的可能性相同)(1)求选出的3名同学是来自不同班级的概率;(2)设为选出的3名同学中女同学的人数,求随机变量的分布列及数学期望18.(12分)某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?19.(12分)正项数列的前项和满足.(Ⅰ)求,,;(Ⅱ)猜想的通项公式,并用数学归纳法证明.20.(12分)选修4-4:坐标系与参数方程已知直线:(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.圆的极坐标方程为.(Ⅰ)求圆心的极坐标;(Ⅱ)设点的直角坐标为,直线与圆的交点为,求的值.21.(12分)已知函数,,(其中为自然对数的底数,…).(1)当时,求函数的极值;(2)若函数在区间上单调递增,求的取值范围;(3)若,当时,恒成立,求实数的取值范围.22.(10分)小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

对求导,判断函数在区间上的单调性,即可求出最大值。【详解】所以在单调递增,在单调递减,故选D【点睛】本题考查利用导函数求函数的最值,属于基础题。2、D【解析】分析:解分式不等式先移项将一侧化为0,通分整理,转化为乘法不等式。详解:,故选D。点睛:解分式不等式的解法要,先移项将一侧化为0(本身一侧为0不需要移项),通分整理,转化为乘法不等式,但分母不能为0.3、A【解析】分析:利用余弦定理即可。详解:由余弦定理可知,所以。点睛:已知三边关系求角度,用余弦定理。4、B【解析】分析:判断出为二项分布,利用公式进行计算即可.或,,可知故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题.5、C【解析】

利用分类计数加法原理和分步计数乘法原理计算即可,注意这个特殊元素的处理.【详解】已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素组合,分为2类:含5,不含5;则可以组成这样的新集合的个数为个.故选C.6、B【解析】

由已知求得样本点的中心的坐标,代入线性回归方程求得,取求得值即可。【详解】解:所以样本的中心坐标为(20,30),代入,得,取,可得,故选:B。【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.7、D【解析】

先对函数求导,根据是奇函数,求出,进而可得出曲线在点处切线的斜率.【详解】由题意得,.是奇函数,,即,解得,,则,即曲线在点处切线的斜率为.故选.【点睛】本题主要考查曲线在某点处的切线斜率,熟记导数的几何意义即可,属于常考题型.8、C【解析】

由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.9、C【解析】

分两种情况计算:有一人和小红同地,无人与小红同地.【详解】大学生小红与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,分两种情况计算:有一人和小红同地,无人与小红同地.小红恰好分配到甲村小学包含的基本事件个数.故选:C【点睛】本题主要考查排列组合的综合应用,意在考查学生对该知识的理解掌握水平和分析推理能力.10、A【解析】由函数y=(2-x)f′(x)的图像可知,方程f′(x)=0有两个实根x=-1,x=1,且在(-∞,-1)上f′(x)<0,在(-1,1)上f′(x)>0,在(1,2)上f′(x)<0,在(2,+∞)上f′(x)<0.所以函数f(x)有极大值f(1)和极小值f(-1).11、C【解析】

根据题意,写出(x+1x)10展开式中的通项为Tr+1,令x【详解】解:根据题意,(x+1x)令10-2r=0,可得r=5;则其常数项为第5+1=6项;故选:C.【点睛】本题考查二项式系数的性质,解题的关键是正确应用二项式定理,写出二项式展开式,其次注意项数值与r的关系,属于基础题.12、A【解析】试题分析:由已知得,a42=a2⋅a8,又因为{an}【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先确定如果都两两互相交换纪念品,共有次交换,可知有次交换没有发生;再根据收到份纪念品的同学有人,可知甲与乙、甲与丙之间没有交换,从而计算得到结果.【详解】名同学两两互相交换纪念品,应共有:次交换现共进行了次交换,则有次交换没有发生收到份纪念品的同学有人一人与另外两人未发生交换若甲与乙、甲与丙之间没有交换,则甲、乙、丙未收到份纪念品收到份纪念品的人数为:人本题正确结果:【点睛】本题考查排列组合应用问题,关键是能够确定未发生交换的次数,并且能够根据收到份纪念品的人数确定未发生交换的情况.14、3【解析】分析:求函数的导数,可判断在上的单调性,求出函数在闭区间上的极大值,可得最大值,从而可得结果.详解:函数的的导数,,由解得,此时函数单调递减.由,解得或,此时函数单调递增.即函数在上单调递增,在上单调递减,即函数在处取得极大值同时也是最大值,则,故答案为.点睛:本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题.求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.15、②④【解析】函数的定义域是,且,当时,在恒成立,所以函数在上单调递增,故①错误;对于,存在,使,则在上单调递减,在上单调递增,所以对于任意,函数存在最小值,故②正确;函数的图象在有公共点,所以对于任意,有零点,故③错误;由②得函数存在最小值,且存在,使,当时,,当时,,故④正确;故填②④.点睛:本题的易错点在于正确理解“任意”和“存在”的含义,且正确区分两者的不同.16、【解析】

由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【点睛】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)设“选出的3名同学是来自不同班级”为事件,由题目信息可知事件A对应的基本事件有个,总的基本事件有个,利用概率公式即可求得结果;(2)根据题意,可知随机变量的所有可能值为,结合,分别求得的值,进而列出分布列,利用公式求得其期望.【详解】(1)设“选出的3名同学是来自不同班级”为事件,则答:选出的3名同学是来自不同班级的概率为.(2)随机变量的所有可能值为∴的分布列为0123答:选出的3名同学中女同学人数的数学期望为.【点睛】该题考查的是有关离散型随机变量的问题,涉及到的知识点有古典概型概率公式,离散型随机变量分布列及其期望,属于简单题目.18、当矩形温室的左侧边长为40m,后侧边长为20m时,花卉种植面积达到最大,最大面积为648m【解析】解:设温室的边长分别为:x,y则:xy=800………………(1分)S=(x-4)(y-2),(x>0)………(3分)=xy-4y-2x+8=800-=808-(3200∵x>0∴3200x+2x≥23200当且仅当时,等号成立∴S≤648…………………(6分)此时x=40y=20,最大的种植面积为:648m219、(Ⅰ)(Ⅱ)猜想证明见解析【解析】分析:(1)直接给n取值求出,,.(2)猜想的通项公式,并用数学归纳法证明.详解:(Ⅰ)令,则,又,解得;令,则,解得;令,则,解得.(Ⅱ)由(Ⅰ)猜想;下面用数学归纳法证明.由(Ⅰ)可知当时,成立;假设当时,,则.那么当时,,由,所以,又,所以,所以当时,.综上,.点睛:(1)本题主要考查数学归纳法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2)数学归纳法的步骤:①证明当n=1时,命题成立。②证明假设当n=k时命题成立,则当n=k+1时,命题也成立.由①②得原命题成立.20、(1).(2)1.【解析】分析:(I)先把圆的极坐标方程化成直角坐标方程,再写出圆心的直角坐标,再化成极坐标.(Ⅱ)利用直线参数方程t的几何意义解答.详解:(I)由题意可知圆的直角坐标系方程为,所以圆心坐标为(1,1),所以圆心的极坐标为.(II)因为圆的直角坐标系方程为,直线方程为,得到所以.点睛:(1)本题主要考查极坐标和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的掌握水平.(2)过定点、倾斜角为的直线的参数方程(为参数).当动点在定点上方时,.当动点在定点下方时,.21、(1)极大值为-1,最小值为(2)(3)【解析】

(1)当时,利用函数导数,求得函数的单调区间,并求出极大值和极小值.(2)对求导后,令导数大于或等于零,对分成三类,讨论函数的单调区间,由此求得取值范围.(3)构造函数,利用导数求得函数的最小值,令这个最小值大于或等于零,解不等式来求得的取值范围.【详解】解:(1)当时,,,当或时,,函数在区间,上单调递增;当时,,函数在区间上单调递减.所以当时,取得极大值;当时,取得极小值.(2),令,依题意,函数在区间上单调递增,即在区间上恒成立.当时,显然成立;当时,在上单调递增,只须,即,所以.当时,在上单调递减,只须,即,所以.综上,的取值范围为.(3),即,令=,因为,所以只须,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论