2022-2023学年北京顺义牛栏山一中高二数学第二学期期末达标检测试题含解析_第1页
2022-2023学年北京顺义牛栏山一中高二数学第二学期期末达标检测试题含解析_第2页
2022-2023学年北京顺义牛栏山一中高二数学第二学期期末达标检测试题含解析_第3页
2022-2023学年北京顺义牛栏山一中高二数学第二学期期末达标检测试题含解析_第4页
2022-2023学年北京顺义牛栏山一中高二数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种 B.960种 C.720种 D.480种2.设函数的定义域为R,满足,且当时.则当,的最小值是()A. B. C. D.3.若集合,则下列结论中正确的是()A. B. C. D.4.已知椭圆(为参数)与轴正半轴,轴正半轴的交点分别为,动点是椭圆上任一点,则面积的最大值为()A. B. C. D.5.函数在区间的图像大致为().A. B.C. D.6.若复数是纯虚数,则实数的值为()A.1或2 B.或2 C. D.27.已知tan=4,cot=,则tan(+)=()A. B. C. D.8.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若的观测值为=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误;D.以上三种说法都不正确.9.袋中装有6个红球和4个白球,不放回的依次摸出两球,在第一次摸到红球的条件下,第二次摸到红球的概率是A. B. C. D.10.已知函数,则()A. B. C. D.11.已知PA,PB是圆C:的两条切线(A,B是切点),其中P是直线上的动点,那么四边形PACB的面积的最小值为()A. B. C. D.12.已知复数,则()A.1 B. C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.若甲、乙两人从5门课程中各选修2门,则甲、乙所选修的课程都不相同的选法种数为___.14.过抛物线的焦点作直线与该抛物线交于两点,过其中一交点向准线作垂线,垂足为,若是面积为的等边三角形,则__________.15.一名同学想要报考某大学,他必须从该校的7个不同专业中选出5个,并按第一志愿、第二志愿、…、第五志愿的顺序填写志愿表,若专业不能作为第一、第二志愿,则他共有____种不同的填法。(用数字作答)16.已知满足约束条件则的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:(1)求这1000件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.(i)利用该正态分布,求;(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出100件这种产品,记表示这件产品的利润,求.附:,若,则.18.(12分)由中央电视台综合频道()和唯众传媒联合制作的《开讲啦》是中国首档青春电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了、两个地区的100名观众,得到如下的列联表:非常满意满意合计30合计已知在被调查的100名观众中随机抽取1名,该观众是地区当中“非常满意”的观众的概率为,且.(Ⅰ)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的、地区的人数各是多少;(Ⅱ)完成上述表格,并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系;(Ⅲ)若以抽样调查的频率为概率,从地区随机抽取3人,设抽到的观众“非常满意”的人数为,求的分布列和期望.附:参考公式:19.(12分)已知函数.(1)求函数的单调区间;(2)当时,求函数的最大值.20.(12分)《山东省高考改革试点方案》规定:从年秋季高中入学的新生开始,不分文理科;年开始,高考总成绩由语数外门统考科目成绩和物理、化学等六门选考科目成绩构成.将每门选考科目的考生原始成绩从高到低划分为共个等级.参照正态分布原则,确定各等级人数所占比例分别为.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩.某校高一年级共人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中化学考试原始成绩基本服从正态分布.(Ⅰ)求化学原始分在区间的人数;(Ⅱ)按高考改革方案,若从全省考生中随机抽取人,求这人中至少有人成绩在的概率;(III)若小明同学选择物理、化学和地理为选考科目,其中物理、化学成绩获得等的概率都是,地理成绩获得等的概率是,且三个科目考试的成绩相互独立.记表示小明选考的三个科目中成绩获得等的科目数,求的分布列.(附:若随机变量,则,,.)21.(12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,短轴长为(1)求椭圆C的方程;(2)当直线l的斜率为3时,求ΔPOQ的面积;(3)在x轴上是否存在点M(m,0),满足|PM|=|QM|?若存在,求出m的取值范围;若不存在,请说明理由.22.(10分)为了解国产奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市年与年这两年销售量前名的五个奶粉的销量(单位:罐),绘制出如下的管状图:(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名(由高到低,不用说明理由);(2)已知该超市年奶粉的销量为(单位:罐),以,,这年销量得出销量关于年份的线性回归方程为(,,年对应的年份分别取),求此线性回归方程并据此预测年该超市奶粉的销量.相关公式:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B.2、D【解析】

先求出函数在区间上的解析式,利用二次函数的性质可求出函数在区间上的最小值.【详解】由题意可知,函数是以为周期的周期函数,设,则,则,即当时,,可知函数在处取得最小值,且最小值为,故选D.【点睛】本题考查函数的周期性以及函数的最值,解决本题的关键就是根据周期性求出函数的解析式,并结合二次函数的基本性质求解,考查计算能力,属于中等题.3、C【解析】

由题意首先求得集合B,然后逐一考查所给选项是否正确即可.【详解】求解二次不等式可得:,则.据此可知:,选项A错误;,选项B错误;且集合A是集合B的子集,选项C正确,选项D错误.本题选择C选项,故选C.【点睛】本题主要考查集合的表示方法,集合之间的关系的判断等知识,熟记集合的基本运算方法是解答的关键,意在考查学生的转化能力和计算求解能力.4、B【解析】分析:根据椭圆的方程算出A(4,1)、B(1,3),从而得到|AB|=5且直线AB:3x+4y﹣12=1.设点P(4cosθ,3sinθ),由点到直线的距离公式算出P到直线AB距离为d=|sin﹣1|,结合三角函数的图象与性质算出dmax=(),由此结合三角形面积公式,即可得到△PAB面积的最大值.详解:由题得椭圆C方程为:,∴椭圆与x正半轴交于点A(4,1),与y正半轴的交于点B(1,3),∵P是椭圆上任一个动点,设点P(4cosθ,3sinθ)(θ∈[1,2π])∴点P到直线AB:3x+4y﹣12=1的距离为d==|sin﹣1|,由此可得:当θ=时,dmax=()∴△PAB面积的最大值为S=|AB|×dmax=6().点睛:(1)本题主要考查椭圆的参数方程和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2)对于|sin﹣1|,不是sin=1时,整个函数取最大值,而应该是sin=-1,要看后面的“-1”.5、A【解析】分析:判断的奇偶性,在上的单调性,计算的值,结合选项即可得出答案.详解:设,当时,,当时,,即函数在上为单调递增函数,排除B;由当时,,排除D;因为,所以函数为非奇非偶函数,排除C,故选A.点睛:本题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用,试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力.6、C【解析】

根据纯虚数的定义可得2m2﹣3m﹣2=0且m2﹣3m+2≠0然后求解.【详解】∵复数z=(2m2﹣3m﹣2)+(m2﹣3m+2)i是纯虚数∴2m2﹣3m﹣2=0且m2﹣3m+2≠0∴m故选C.【点睛】本题主要考查了纯虚数的概念,解题的关键是要注意m2﹣3m+2≠0,属于基础题.7、B【解析】

试题分析:由题意得,,故选B.考点:两角和的正切函数.8、C【解析】试题分析:要正确认识观测值的意义,观测值同临界值进行比较得到一个概率,这个概率是推断出错误的概率,若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误,故选C.考点:独立性检验.9、D【解析】

通过条件概率相关公式即可计算得到答案.【详解】设“第一次摸到红球”为事件A,“第二次摸到红球”为事件B,而,,故,故选D.【点睛】本题主要考查条件概率的相关计算,难度不大.10、A【解析】

根据分段函数解析式,结合指数幂与对数的运算,即可化简求解.【详解】函数则,所以,故选:A.【点睛】本题考查了分段函数的求值,指数幂与对数式的运算应用,属于基础题.11、C【解析】

配方得圆心坐标,圆的半径为1,由切线性质知,而的最小值为C点到的距离,由此可得结论.【详解】由题意圆的标准方程为,∴圆心为,半径为.又,到直线的距离为,∴.故选C.【点睛】本题考查圆切线的性质,考查面积的最小值,解题关键是把四边形面积用表示出来,而的最小值为圆心到直线的距离,从而易得解.12、C【解析】.故选二、填空题:本题共4小题,每小题5分,共20分。13、30【解析】

根据题意知,采用分步计数方法,第一步,甲从5门课程中选2门,有种选法;第二步乙从剩下的3门中选2门,有种选法,两者相乘结果即为所求的选法种数.【详解】.故答案为30.【点睛】本题主要考查了分步乘法计数原理的应用,分步要做到“步骤完整”,各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复.14、2.【解析】分析:根据是面积为的等边三角形,算出边长,及∠,得出p与边长的关系详解:是面积为的等边三角形即∠即p=2点晴:本题主要考察抛物线的定义及性质,在抛物线类的题目中,做题的过程中要抓住抛物线上一点到焦点的距离和到准线的距离相等的条件是做题的关键15、【解析】根据题意,分2步进行分析:①、由于A专业不能作为第一、第二志愿,需要在除A之外的6个专业中,任选2个,作为第一、二志愿,有种填法,②、第一二志愿填好后,在剩下的5个专业中任选3个,作为第三四五志愿,有种填法,则该学生有30×60=1800种不同的填法;故答案为:1800.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.16、1【解析】

做出满足条件的可行域,根据图形即可求解.【详解】约束条件表示的可行域如图中阴影部分所示.由得,则目标函数过点时,取得最大值,.故答案为:1【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)200,150;(2)(i);(ⅱ)280.【解析】

(1)直接利用样本平均数和样本方差公式计算得到答案.(2)(i)先判断,则(ⅱ)Ⅹ表示100件产品的正品数,题意得,计算,再计算【详解】(1)由题意得.∴,即样本平均数为200,样本方差为150.(2)(i)由(1)可知,,∴(ⅱ)设Ⅹ表示100件产品的正品数,题意得,∴,∴.【点睛】本题考查了数学期望,方差的计算,意在考查学生的计算能力和应用能力.18、(1)3;4.(2)列联表见解析;没有的把握认为观众的满意程度与所在地区有关系.(3)分布列见解析;.【解析】分析:(1)先根据概率计算x的值,得出y+z=35,再计算y与z的值,根据比例得出应抽取“满意”的A、B地区的人数;

(2)根据独立性检验公式计算观测值k2,从而得出结论;

(3)根据二项分布的概率公式计算分布列和数学期望.详解:(Ⅰ)由题意,得,所以,所以,因为,所以,,地抽取,地抽取.(Ⅱ)非常满意满意合计301545352055合计6535100的观察值所以没有的把握认为观众的满意程度与所在地区有关系.(Ⅲ)从地区随机抽取1人,抽到的观众“非常满意”的概率为随机抽取3人,的可能取值为0,1,2,3,,的分布列0123的数学期望:点睛:本题考查了抽样调查,独立性检验,二项分布,题目比较长做题时要有耐心审题,认真分析条件,细心求解,属于中档题.19、(1)的单调增区间为,;单调减区间为(2)【解析】

(1)函数求导数,分别求导数大于零小于零的范围,得到单调区间.(2)根据(1)中的单调区间得到最大值.【详解】解:(1)当时,,或;当时,.∴的单调增区间为,;单调减区间为.(2)分析可知的递增区间是,,递减区间是,当时,;当时,.由于,所以当时,.【点睛】本题考查了函数的单调区间,最大值,意在考查学生的计算能力.20、(Ⅰ)1227人(Ⅱ)(III)见解析【解析】

(Ⅰ)根据正态分布的区间及对称性质,利用原则及数据即可得化学原始分在区间的概率,进而求得改区间内的人数;(Ⅱ)先求得再区间内学生所占比例,即可得随机抽取1人成绩在该区间的概率,由独立重复试验的概率公式,即可求得人中至少有人成绩在改区间的概率;(III)根据题意可知随机变量的可能取值为.根据所给各科目获得等的概率,由独立事件的乘法公式可得各可能取值对应的概率,即可得分布列.【详解】(Ⅰ)因为化学考试原始分基本服从正态分布,即,所以,所以化学原始分在区间的人数为人.(Ⅱ)由题意得,位于区间内所占比例为,所以随机抽取人,其成绩在内的概率为,所以随机抽取人,相当于进行次独立重复试验.设这人中至少有人成绩在为事件,则.(III)随机变量的可能取值为.则,,,.所以的分布列为【点睛】本题考查了正态分布曲线的性质及综合应用,独立重复试验概率的求法,独立事件概率乘法公式的应用,离散型随机变量分布列的求法,属于中档题.21、(1)x24+y23=1(2)453(3)在【解析】

(1)根据题中条件列有关a、b、c的方程组,解出这三个数,可得出椭

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论