版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.1圆
(第3课时)人教版九年级(上册)第二十四章24.1.3弧、弦、圆心角圆是中心对称图形吗?它的对称中心在哪里?·一、思考圆是中心对称图形,它的对称中心是圆心.NO把圆O的半径ON绕圆心O旋转任意一个角度,NON'θ把圆O的半径ON绕圆心O旋转任意一个角度,NON'θ把圆O的半径ON绕圆心O旋转任意一个角度,NON'θ把圆O的半径ON绕圆心O旋转任意一个角度,NON'θ定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合。把圆O的半径ON绕圆心O旋转任意一个角度,由此可以看出,点N'仍落在圆上。·
圆心角:我们把顶点在圆心的角叫做圆心角.OBA二、概念如图所示,∠AOB就是一个圆心角。
如图,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等,OA=OA′,OB=OB′,从而点A与A′重合,点B与B′重合.·OAB·OABA′B′A′B′三、探究因此,弧AB与弧A′B′
重合,AB与A′B′重合.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角_____,所对的弦________;在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角______,所对的弧_________.这样,我们就得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.相等相等相等相等同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.四、定理证明:∵AB=AC∴AB=AC,△ABC等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠BOC=∠AOC.·ABCO五、例题例1如图,在⊙O中,AB=AC,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.⌒⌒⌒⌒1.如图,AB、CD是⊙O的两条弦.(1)如果AB=CD,那么___________,_________________.(2)如果=,那么____________,______________.(3)如果∠AOB=∠COD,那么_____________,____________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?·CABDEFOAB=CDAB=CD相等
因为AB=CD
,所以∠AOB=∠COD.
又因为AO=CO,BO=DO,
所以△AOB≌△COD.
又因为OE
、OF是AB与CD对应边上的高,所以OE=OF.六、练习⌒CD⌒AB⌒AB⌒CD=⌒AB⌒CD=2.如图,AB是⊙O的直径,
,∠COD=35°,求∠AOE的度数.·AOBCDE解:⌒BC⌒CD==⌒DE⌒BC⌒CD==⌒DE例2:如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为4cm,求AB的长OABCOABCD
如图,AC与BD为⊙O的两条互相垂直的直径.求证:AB=BC=CD=DA;AB=BC=CD=DA.⌒⌒⌒⌒∴AB=BC=CD=DA
⌒⌒⌒⌒证明:∵AC与BD为⊙O的两条互相垂直的直径,∴∠AOB=∠BOC=∠COD=∠DOA=90ºAB=BC=CD=DA(圆心角定理)点此继续知识延伸定理:在同圆或等圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦虑抑郁症的临床护理
- 宫缩乏力的健康宣教
- 创伤性肘关节炎的健康宣教
- 慢性蝶窦炎的健康宣教
- JJF(黔) 82-2024 光柱式血压计校准规范
- 《数学家的生日蛋糕》课件
- 学期班级教学计划活动任务工作安排
- 2024-2025学年年七年级数学人教版下册专题整合复习卷第28章 锐角三角函数 数学活动(含答案)
- 鱼塘工程施工合同三篇
- 职场变革应对指南计划
- 肇事逃逸的法律规定
- 300KW储能系统初步设计方案及调试
- 2024年安徽合肥市轨道交通集团有限公司招聘笔试参考题库含答案解析
- 检修部年度安全工作总结
- 竞争对手分析管理方案了解竞争对手动态的手段
- 中职《在实践中学礼仪外研社第二版》课件 项目一 任务一
- 东北抗联精神 (第二稿)
- 2024年XXX学校学会鼓励主题班会-相信鼓励的力量
- 2024《HSK标准教程3》第3课 桌子上放着很多饮料 教案
- 理解生活满意度的标准和评估方法
- 中医五则诊断法在临床中的应用与误区
评论
0/150
提交评论