版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嘉兴市南溪中学高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列说法正确的是(
)A.梯形可以确定一个平面B.圆心和圆上两点可以确定一个平面C.两条直线a,b没有公共点,那么a与b是异面直线D.若是两条直线,是两个平面,且,则是异面直线参考答案:A略2.函数的值域是(
)A.
B.
C.
D.参考答案:B3.在上满足,则的取值范围是
(
) A.
B.
C. D.参考答案:D4.执行如下图的程序框图,若输入a的值为2,则输出S的值为(
)A.3.2
B.3.6
C.3.9
D.4.9参考答案:C;;;;.输出.
5.设是两个非零向量,下列能推出的是(
)A.
B.
C.
D.且的夹角为参考答案:D略6.已知正实数x,y满足,若对任意满足条件的x,y,都有恒成立,则实数a的最大值为(
)A. B.7 C. D.8参考答案:B【分析】由,利用,求得,恒成立,等价于恒成立,令,利用单调性求出的最小值,进而可得结果.【详解】,且,故,整理即,又均为正实数,故,又对于任意满足的正实数,均有恒成立,整理可得恒成立,令,令,时所以在上递增,,因此,实数的最大值为7,故选B.【点睛】本题主要考查基本不等式的应用,利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立.7.下列各组函数表示同一函数的是(
)
A.
B.
C.
D.参考答案:C略8.若则的值为(
)
参考答案:D略9.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为()A.9
B.10
C.19
D.29参考答案:B10.已知函数对任意都有,若的图象关于直线对称,且,则()A.2
B.3
C.4
D.0参考答案:A中令得.又的图象关于直线对称关于y轴对称,是偶函数,
二、填空题:本大题共7小题,每小题4分,共28分11.已知a>0,函数在区间[1,4]上的最大值为,则a的值为
参考答案:12.下列各组函数中,表示同一函数的是(
)A.
B.C.
D.参考答案:C13.若数列{an}满足a2﹣a1<a3﹣a2<a4﹣a3<…<an+1﹣an<…,则称数列{an}为“差递增”数列.若数列{an}是“差递增”数列,且其通项an与其前n项和Sn满足3Sn=1+λ﹣2an(n∈N*),则λ的取值范围是.参考答案:(﹣1,+∞)【分析】根据数列递推公式得到数列{an}是以2为公比的等比数列,求出数列{an}的通项公式,再根据新定义,即可求出λ的范围.【解答】解:∵3Sn=1+λ﹣2an(n∈N*),n≥2时,3Sn﹣1=1+λ﹣2an﹣1,两式相减得5an=2an﹣1.故数列{an}是以为公比的等比数列,当n=1时,a1=,∴an=,可得an+1﹣an=,an﹣an﹣1=,由此可得(an+1﹣an)﹣(an﹣an﹣1)=,可得1+λ>0?λ>﹣1故答案为:(﹣1,+∞)14.计算:3﹣27﹣lg0.01+lne3=.参考答案:0【考点】对数的运算性质;有理数指数幂的化简求值.【分析】利用对数和分数指数幂的运算法则求解.【解答】解:=4﹣9+2+3=0.故答案为:0.15.若,则=.参考答案:【考点】GH:同角三角函数基本关系的运用.【分析】由题意利用两角和的正切公式,求得tanα的值,再利用同角三角函数的基本关系求得要求式子的值.【解答】解:若=,∴tanα=,则====,故答案为:.16.已知集合A={﹣1,0,1},集合B满足A∪B={﹣1,0,1},则集合B有
个. 参考答案:8【考点】并集及其运算. 【专题】集合思想;数学模型法;集合. 【分析】集合A={﹣1,0,1},集合B满足A∪B={﹣1,0,1},故集合B是集合A的子集,根据集合A中元素的个数,能够求出集合B的个数. 【解答】解:∵集合A={﹣1,0,1},集合B满足A∪B={﹣1,0,1}, ∴集合B是集合A的子集, ∵集合A有3个元素, ∴集合A有23=8个子集. 故集合B有8个. 故答案为:8. 【点评】本题考查集合的并集及其运算,是基础题. 17.平面点集,用列举法表示
。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)一片森林原来面积为,计划每年砍伐一些树,且使森林面积每年比上一年减少,10年后森林面积变为,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林面积为.(1)求的值;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?参考答案:略19.已知函数.(1)求此函数的定义域D,并判断其奇偶性;(2)是否存在实数a,使f(x)在x∈(1,a)时的值域为(﹣∞,﹣1)?若存在,求出a的值;若不存在,说明理由.参考答案:【考点】对数函数的图象与性质.【分析】(1)利用真数大于0,求此函数的定义域D,利用f(﹣x)=﹣f(x),判断其奇偶性;(2)由题意f(a)=﹣1,即=,从而得出结论.【解答】解:(1)由>0,可得x<﹣1或x>1,∴D={x|x<﹣1或x>1};f(﹣x)=﹣f(x),∴函数f(x)是奇函数;(2)由题意,函数单调递增,f(a)=﹣1,即=,∵a>1,∴.20.如图,A,B是单位圆O上的点,且点A在第一象限,点B在第二象限,C是圆与x轴正半轴的交点,B点的坐标为,.(1)求y的值;(2)设,求,,的值.参考答案:(1)(2);;【分析】(1)利用两点间距离公式表示出,解方程求得结果;(2)设,根据三角函数的定义、诱导公式、同角三角函数关系可求得结果.【详解】(1)由题意得:且,解得:(2)设,则有:,,由得:;;【点睛】本题考查三角函数的定义、同角三角函数求解、诱导公式应用,属于基础题.21.已知集合A={x|1≤x≤7},B={x|﹣2m+1<x<m},全集为实数集R.(1)若m=5,求A∪B,(?RA)∩B;(2)若A∩B=A,求m的取值范围.参考答案:【考点】交、并、补集的混合运算;交集及其运算.【专题】集合.【分析】(1)将m=5,代入集合B化简,然后求解即可,(2)由A∩B=A,得A?B,利用子集概念求解.【解答】解:(1)∵m=5,∴A={x|1≤x≤7},B={x|﹣9<x<5},∴A∪B={x|﹣9<x≤7},又∵?RA={x|x<1,或x>7},∴(?RA)∩B={x|﹣9<x<1},(2)∵A∩B=A,∴A?B,∴,∴,∴m>7.【点评】本题考查集合的包含关系,以及交并补的运算,属于基础题目,熟练运用概念求解,也可利用数轴辅助求解.22.如图,游客从某旅游景区的景点A处下山至C处有两种路径。一种是从A沿直线步行到C,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物联网平台与设备采购合同
- 2024年度医疗器械采购合同:高精度医疗设备购买
- 2024年度保温砂浆生产线设备采购及安装合同
- 2024年度校园数字化建设设计与施工合同
- 2024年度专利许可使用合同关键技术参数与权益分配
- 2024年度仓储服务合同的服务条款和责任规定
- 04版公共车位销售与管理合同
- 2024年度企业员工福利IC卡发放与管理合同
- 2024年度版权许可合同:电影版权转授许可协议
- 2024年度大连二手房地产估价服务合同
- 公共卫生与预防医学继续教育平台“大学习”活动线上培训栏目题及答案
- DZ∕T 0382-2021 固体矿产勘查地质填图规范(正式版)
- 人工智能生涯发展展示
- 家庭保险保障计划书
- 马克思主义经典著作选读智慧树知到课后章节答案2023年下四川大学
- 思想道德与法治课件:第四章 第一节 全体人民共同的价值追求则
- JGJ_T231-2021建筑施工承插型盘扣式钢管脚手架安全技术标准(高清-最新版)
- 最新患者用药情况监测
- 基于单片机的电子频率计的设计设计
- 深圳市建筑装饰工程消耗量标准(第三版)2003
- 洁净室施工组织设计方案方案范本
评论
0/150
提交评论