版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市大学附属中学2022-2023学年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数在区间上最大值与最小值分别是A.
B.
C.
D.参考答案:A略2.给出以下四个数:6,-3,0,15,用冒泡排序法将它们按从大到小的顺序排列需要经过几趟(
)A.1B.2C.3D.4参考答案:C3.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是(
)A.假设三内角都不大于60度
B.假设三内角都大于60度C.假设三内角至多有一个大于60度
D.假设三内角至多有两个大于60度参考答案:B4.某中学元旦晚会共由6个节目组成,演出顺序有如下要求:节目甲必须排在乙的前面,丙不能排在最后一位,该晚会节目演出顺序的编排方案共有(
)A.720种 B.600种 C.360种 D.300种参考答案:D【分析】根据题意,分2步进行分析:①,将除丙之外的5人排成一排,要求甲在乙的前面,②,5人排好后有5个空位可选,在其中任选1个,安排丙,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:将除丙之外的5人排成一排,要求甲在乙的前面,有种情况,②5人排好后有5个空位可选,在其中任选1个,安排丙,有5种情况,则有60×5=300种不同的顺序,故选D.【点睛】本题考查排列、组合的实际应用,涉及分步计数原理的应用,属于基础题.5.下列函数中,最小值为4的是A.
B.
C.
D.参考答案:C6.已知,则与方向相反的单位向量的坐标为()A.(2,1) B.(﹣2,﹣1) C. D.参考答案:D【考点】平面向量的坐标运算.【分析】可求出的坐标,并求出,这样根据单位向量的概念及向量坐标的数乘运算即可得出正确选项.【解答】解:,且;∴.故选D.7.已知直线,平面,且,给出下列命题,其中正确的是( )A.若,则
B.若,则C.若,则
D.若,则参考答案:8.下列命题中,真命题是()A.x0∈R,
B.x∈R,2x>x2C.a+b=0的充要条件是
D.a>1,b>1是的充分条件参考答案:D9.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有(
) A.36种 B.12种 C.18种 D.48种参考答案:A考点:排列、组合的实际应用.专题:排列组合.分析:根据题意,小张和小赵只能从事前两项工作,由此分2种情况讨论,①若小张或小赵入选,②若小张、小赵都入选,分别计算其情况数目,由加法原理,计算可得答案.解答: 解:根据题意分2种情况讨论,①若小张或小赵入选,则有选法C21C21A33=24;②若小张、小赵都入选,则有选法A22A32=12,共有选法12+24=36种,故选A.点评:本题考查组合、排列的综合运用,涉及分类讨论的思想,注意按一定顺序,做到不重不漏.10.在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正弦值为()A. B. C. D.参考答案:B【分析】首先求出,,由,得是异面直线与所成角(或所成角的补角),利用余弦定理可得答案.【详解】设正方体的棱长为2,∵为棱的中点,∴,,∵,∴是异面直线与所成角(或所成角的补角),,∴.∴异面直线与所成角的正弦值为.故选:B.【点睛】本题考查异面直线所成角的求法,异面直线所成的角常用方法有:将异面直线平移到同一平面中去,达到立体几何平面化的目的;或者建立坐标系,通过求直线的方向向量得到直线夹角或其补角.二、填空题:本大题共7小题,每小题4分,共28分11.若方程表示两条直线,则的取值是
.参考答案:112.已知正△ABC的边长为1,那么在斜二侧画法中它的直观图△A′B′C′的面积为
.参考答案:【考点】斜二测法画直观图.【专题】数形结合;定义法;空间位置关系与距离.【分析】由直观图和原图的面积之间的关系,直接求解即可.【解答】解:正三角形的高OA=,底BC=1,在斜二侧画法中,B′C′=BC=1,0′A′==,则△A′B′C′的高A′D′=0′A′sin45°=×=,则△A′B′C′的面积为S=×1×=,故答案为:.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本运算的考查13.从,概括出第n个式子为_______。参考答案:.分析:根据前面的式子找规律写出第n个式子即可.详解:由题得=故答案为:点睛:(1)本题主要考查不完全归纳,考查学生对不完全归纳的掌握水平和观察分析能力.(2)不完全归纳得到的结论,最好要检验,发现错误及时纠正.14.在等差数列中,若,则的值为
.参考答案:300略15.已知定义在上的偶函数满足,且在区间[0,2]上.若关于的方程有三个不同的根,则的范围为
.参考答案:16.等差数列前9项的和等于前4项的和,若,,则
参考答案:1017.空间直角坐标系中,设A(﹣1,2,﹣3),B(﹣1,0,2),点M和点A关于y轴对称,则|BM|=
.参考答案:3【考点】空间中的点的坐标.【分析】先求出点M(1,2,3),由此利用两点间距离公式能求出|BM|的值.【解答】解:∵空间直角坐标系中,设A(﹣1,2,﹣3),B(﹣1,0,2),点M和点A关于y轴对称,∴M(1,2,3),|BM|==3.故答案为:3.【点评】本题考查空间中两点间距离的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知函数。若曲线与曲线相交,且在交点处有相同的切线,求的值和切线的方程.参考答案:
……3分由已知得,解得:.
……6分所以两条切线交点为,切线斜率为.……8分所以切线方程为
即.
……10分19.为保持水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立。(I)求4人恰好选择了同一家公司的概率;(II)设选择甲公园的志愿者的人数为,试求的分布列及期望。www.参考答案:略20.(本题12分)设函数在内有极值。
(1)求实数的取值范围;
(2)若分别为的极大值和极小值,记,求S的取值范围。
(注:为自然对数的底数)参考答案:解:的定义域为(1分)
(1)(2分)
由在内有解,
令,
不妨设,则(3分)
所以,(4分)
解得:(5分)
(2)由0得或,
由得或
所以在内递增,在内递减,
在内递减,在内递增,(7分)
所以
因为,
所以
(9分)
记,
所以在单调递减,所以(11分)
又当时,
所以(12分)21.如图,四棱锥满足面,.,.(Ⅰ)求证:面面.(Ⅱ)求证:面.参考答案:见解析()证明:∵平面,平面,∴,又∵,∴,∵,∴平面,又平面,∴平面平面.(Ⅱ)证明:取中点为,∵,,,是中点,∴是矩形,,,∴,在中,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人与公司间代收代付业务合同范本3篇
- 2025年度年度城市绿化劳务承包综合服务版合同3篇
- 二零二五年度公司施工队高速公路施工合作协议3篇
- 2025年度航空航天实验室航天器研发与制造合同3篇
- 二零二五年度冷库租赁及冷链物流运输保障合同
- 二零二五年度冷链运输及冷链设备维修服务合同
- 二零二五年度航空航天材料研发全新期权合同3篇
- 2025年度智能门锁用户购买合同3篇
- 二零二五年度金融机构对赌协议合同-信贷业务与风险控制3篇
- 2025年度人工智能公司合伙人股权分配与战略规划合同3篇
- 骨科疼痛的评估及护理
- 【MOOC】概率论与数理统计-南京邮电大学 中国大学慕课MOOC答案
- 2024年度软件开发分包合同技术要求与交底2篇
- 居家养老人员培训管理制度
- 抗菌药物的合理应用培训
- 初三数学老师家长会发言稿
- 湖北第二师范学院《操作系统》2023-2024学年期末试卷
- 2021-2022学年河北省唐山市高一上学期期末语文试题
- 舒适化医疗麻醉
- 南宁二中、柳州高中2025届高一上数学期末联考试题含解析
- 高效能人士的七个习惯(课件)
评论
0/150
提交评论