版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.3实际问题与一元二次方程(几何问题和数字问题)【A组-基础题】1.(2019年广西北部湾经济区中考)扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.【详解】设花带的宽度为,则可列方程为,故选D.2.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x-8=0 B.x2-9x-8=0C.x2-9x+8=0 D.2x2-9x+8=0【详解】解:设人行道的宽度为x米,根据题意得,(18﹣3x)(6﹣2x)=60,化简整理得,x2﹣9x+8=0.故选C.3.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是(
)A.3 B.4 C.4.8 D.5【详解】解:由图可得出,整理,得,解得,(不合题意,舍去).故选:D.4.(2019年内蒙古通辽市中考)一个菱形的边长是方程的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或80【详解】解:,所以,,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为,∴菱形的面积.故选B.5.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有一棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB的长为()A.8或24 B.16 C.12 D.16或12【详解】解:设AB=xm,则BC=(28﹣x)m,依题意,得:x(28﹣x)=192,解得:x1=12,x2=16.∵P处有一棵树与墙CD、AD的距离分别是15m和6m,∵,∴,∴x2=16不合题意,舍去,∴x=12.故选:C.6.若一个三角形的两边长分别为2和6,第三边是方程x2-10x+21=0的一根,则这个三角形的周长为(
)A.7 B.3或7 C.15 D.11或15【详解】x2−10x+21=0,(x−3)(x−7)=0,则x−3=0,x−7=0,解得:x=3或7,当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故答案选C.7.一个两位数比它的十位上的数字与个位上的数字之积大,已知十位上的数字比个位上的数字大.则这个两位数是()A.64 B.75 C.53或75 D.64或75【详解】令个位上的数字为x,则依据题意可知十位上的数字为(x+2),该两位数可表示为:10(x+2)+x依据题意列出方程:10(x+2)+x=x(x+2)+40整理得到:x2-9x+20=0解得:x1=4,x2=5则该两位数为64或75,故选择D.8.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,若设个位数字为a,则可列方程为(
)A.a2+(a-4)2=10(a-4)+a-4 B.a2+(a+4)2=10a+a-4-4C.a2+(a+4)2=10(a+4)+a-4 D.a2+(a-4)2=10a+(a-4)-4【详解】依题意得:十位数字为:a+4,这个数为:a+10(x+4),这两个数的平方和为:a2+(a+4)2,∵两数相差4,∴a2+(a+4)2=10(a+4)+a−4.故选:C.9.若两个连续整数的积是56,则它们的和为()A.11 B.15 C.﹣15 D.±15【详解】解:设这两个连续整数为x,x+1.则x(x+1)=56,解之得,x=7或x=-8,则x+1=8或-7,则它们的和为±15.故选D.10.(江苏省南通市2020年中考)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.【详解】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.11.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为cm.【详解】解:如图所示,圆心为A,设半径为R,大正方形边长是2x∵正方形的两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x,∵小正方形的面积为16cm2,∴小正方形的边长为EF=DF=4,由勾股定理得:,即,解得:x=4,,故答案为:.12.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.【详解】设小路的宽度为,由题意和图示可知,小路的面积为,解一元二次方程,由,可得.13.(2019年江苏省南京市中考)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?【详解】解:设扩充后广场的长为,宽为.根据题意,得.解得(不合题意,舍去).所以.答:扩充后广场的长和宽应分别为和.14.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.【详解】解:(1)设养鸡场的宽为xm,根据题意得:x(35﹣2x)=150,解得:x1=10,x2=7.5,当x1=10时,35﹣2x=15<18,当x2=7.5时35﹣2x=20>18,(舍去),则养鸡场的宽是10m,长为15m.(2)设养鸡场的宽为xm,根据题意得:x(35﹣2x)=200,整理得:2x2﹣35x+200=0,△=(﹣35)2﹣4×2×200=1225﹣1600=﹣375<0,因为方程没有实数根,所以围成养鸡场的面积不能达到200m2.15.如图是2019年1月份的日历.任意选择图中的菱形框部分,将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:9×11-3×17=48,13×15-7×21=48.不难发现,结果都是48(1)请证明发现的规律;(2)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120,请判断他的说法是否正确.【详解】(1)证明:设中间的数为a,则另外4个数分别为(a-7),(a-1),(a+1),(a+7),∴(a-1)(a+1)-(a-7)(a+7)=a2-1-(a2-49)=48.(2)解:设这5个数中最大数为x,则最小数为(x-14),依题意,得:x(x-14)=120,解得:x1=20,x2=-6(不合题意,舍去).∵20在第一列,∴不符合题意,∴小明的说法不正确【B组-提高题】16.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为(
)A.6cm2 B.7cm2 C.12cm2 D.19cm2【详解】解:设矩形的长为xcm,宽为ycm,依题意,得:,(②-①)÷3,得:y-x+1=0,∴x=y+1③.将③代入②,得:y(y+1)=16+3(y-4)+11,整理,得:y2-2y-15=0,解得:y1=5,y2=-3(舍去),∴x=6.∴按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为:(x-4)(y-3)+(x-3)(y-4)=2×2+3×1=7.故选:B.17.如图1,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15m,一面利用旧墙,其余三面用篱笆围,篱笆总长为24m,设平行于墙的BC边长为xm(1)若围成的花圃面积为40m2时,求BC的长(2)如图2,若计划在花圃中间用一道篱笆隔成两个小矩形,且围成的花圃面积为50m2,请你判断能否成功围成花圃,如果能,求BC的长?如果不能,请说明理由.(3)如图3,若计划在花圃中间用n道篱笆隔成小矩形,且当这些小矩形为正方形时,请列出x、n满足的关系式【详解】(1)根据题意得,AB=m则•x=40∴x1=20,x2=4,因为20>15,所以x1=20舍去答:BC的长为4米;(2)不能围成花圃,根据题意得,•x=50方程可化为x2-24x+150=0△=(-24)2-4×150<0,∴方程无实数解,∴不能围成花圃;(3)∵用n道篱笆隔成小矩形,且这些小矩形为正方形,∴AB=而正方形的边长也为,∴关系式为:18.发现:四个连续的整数的积加上是一个整数的平方.验证:(1)的结果是哪个数的平方?(2)设四个连续的整数分别为,试证明他们的积加上是一个整数的平方;延伸:(3)有三个连续的整数,前两个整数的平方和等于第三个数的平方,试求出这三个整数分别是多少.【详解】(1)3×4×5×6+1=361=192,即3×4×5×6+1的结果是19的平方;(2)设这四个连续整数依次为:n-1,n,n+1,n+2,则(n-1)n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焖渣坑土建施工方案
- 许昌木廊架施工方案
- 物业走水应急预案方案
- 中国感弗项目投资可行性研究报告
- 来料加工步进电机驱动器及硬件防火墙等产品建设项目可行性研究报告模板
- 2021-2026年中国FPSO行业市场调研及投资战略规划报告
- 中国天竺子市场运行态势及行业发展前景预测报告
- 2024-2025年中国无线通讯系统行业市场运营态势分析及投资前景预测报告
- 钢铁行业招投标居间服务
- 健身房装修消防安全协议
- 外呼合作协议
- 小学二年级100以内进退位加减法800道题
- 2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)语文试题
- 《立式辊磨机用陶瓷金属复合磨辊辊套及磨盘衬板》编制说明
- 保险公司2025年工作总结与2025年工作计划
- 育肥牛购销合同范例
- 暨南大学珠海校区财务办招考财务工作人员管理单位遴选500模拟题附带答案详解
- DB51-T 2944-2022 四川省社会组织建设治理规范
- 2024北京初三(上)期末英语汇编:材料作文
- 2023年辅导员职业技能大赛试题及答案
- 礼仪服务合同三篇
评论
0/150
提交评论