2022年湖北省十堰市丹江口盐池河中学高二数学理期末试题含解析_第1页
2022年湖北省十堰市丹江口盐池河中学高二数学理期末试题含解析_第2页
2022年湖北省十堰市丹江口盐池河中学高二数学理期末试题含解析_第3页
2022年湖北省十堰市丹江口盐池河中学高二数学理期末试题含解析_第4页
2022年湖北省十堰市丹江口盐池河中学高二数学理期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年湖北省十堰市丹江口盐池河中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是()A. B. C. D.无法确定参考答案:C【考点】等可能事件的概率.【分析】甲,乙两人随意入住两间空房,每人有两种住法,故两人有2×2=4种住法,且每种住法出现的可能性相等,故为古典概型.只要再计算出甲乙两人各住一间房的住法种数A22=2,求比值即可.【解答】解:由题意符合古典概型,其概率为P=故选C2.过原点且倾斜角为的直线被圆所截得的弦长为 A. B. C. D.参考答案:D3.给出平面区域如图所示,若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为(

)A. B. C.4 D.参考答案:B【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由题设条件,目标函数z=ax+y(a>0),取得最大值的最优解有无数个知取得最优解必在边界上而不是在顶点上,目标函数中两个系数皆为正,故最大值应在左上方边界AC上取到,即ax+y=0应与直线AC平行,进而计算可得答案.【解答】解:由题意,最优解应在线段AC上取到,故ax+y=0应与直线AC平行∵kAC==﹣,∴﹣a=﹣,∴a=,故选:B【点评】本题考查线性规划最优解的判定,属于该知识的逆用题型,知最优解的特征,判断出最优解的位置求参数.4.下列说法错误的是()A.如果命题“?p”与命题“p∨q”都是真命题,那么命题q一定是真命题B.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”C.若命题p:?x0∈R,x02+2x0-3<0,则?p:?x∈R,x2+2x-3≥0D.“sinθ=”是“θ=30°”的充分不必要条件参考答案:D5.等差数列{an}中,若a2+a8=15﹣a5,则a5的值为()A.3 B.4 C.5 D.6参考答案:C【考点】等差数列的通项公式.【分析】由等差数列的性质化简已知的式子,从而求出a5的值.【解答】解:由题意得,a2+a8=15﹣a5,所以由等差数列的性质得a2+a8=2a5=15﹣a5,解得a5=5,故选:C.6.若函数y=x2+(2a-1)x+1在区间(-∞,2上是减函数,则实数a的取值范围是(

A.-,+∞)

B.(-∞,-

C.,+∞)

D.(-∞,参考答案:B7.如图,空间四边形OABC中,,,,点M在OA上,,点在N为BC中点,则等于(

)A.

B.

C.

D.参考答案:B8.已知,是相异两个平面,m,n是相异两直线,则下列命题中正确的是(

)A.若,,则 B.若,,则C.若,,,则 D.若,,则参考答案:B【分析】在A中,根据线面平行的判定判断正误;在B中,由平面与平面平行的判定定理得;在C中,当时,不妨令,,则,在D中,据线面平行的判定判断正误;【详解】对于A,若,,则或,故A错;对于B,若,,则由平面与平面平行的判定定理得,故B正确;对于C,当时,不妨令,,则,故C错误;对于D,若,,则或,故D错,故选B.【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用,属于中档题.9.随机变量ξ~B(100,0.2),那么D(4ξ+3)的值为

()(A).64

(B).256

(C).259

(D).320参考答案:B略10.设函数,则等于

A.0

B.

C.

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知直线l交椭圆=1于M,N两点,且线段MN的中点为(1,1),则直线l方程为.参考答案:5x+4y﹣9=0【考点】椭圆的简单性质.【分析】利用点差法及中点坐标公式,求得直线MN的斜率,根据直线的点斜式公式,即可求得l的方程.【解答】解:设M(x1,y1),N(x2,y2),P(1,1)是线段MN的中点,则x1+x2=8,y1+y2=4;依题意,,①﹣②得:(x1+x2)(x1﹣x2)=﹣(y1+y2)(y1﹣y2),由=1,=1,由题意知,直线l的斜率存在,∴kAB==﹣,∴直线l的方程为:y﹣1=﹣(x﹣1),整理得:5x+4y﹣9=0.故直线l的方程为5x+4y﹣9=0,故答案为:5x+4y﹣9=0.12.已知圆=0与抛物线的准线相切,则___参考答案:213.在△ABC中,若,则△ABC的形状是

参考答案:等腰或直角三角形略14.已知变量x、y满足条件,求z=2x+y的最大值.参考答案:3【考点】简单线性规划.【分析】先画出满足约束条件的平面区域,然后求出目标函数z=2x+y取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.【解答】解:满足约束条件的平面区域如下图所示:作直线l0:2x+y=0把直线向上平移可得过点A(2,﹣1)时2x+y最大当x=2,y=﹣1时,z=2x+y取最大值3,故答案为3.15.若集合有且只有一个元素,则实数a的取值集合是___________.参考答案:或【分析】讨论两种情况,结合判别式为零即可得结果.【详解】当时,,合题意;当时,若集合只有一个元素,由一元二次方程判别式得.综上,当或时,集合只有一个元素,故答案为.【点睛】本题主要考查集合的表示方法以及元素与集合的关系,属于中档题.集合的表示方法,主要有列举法、描述法、图示法、区间法,描述法表示集合是最常用的方法之一,正确理解描述法并加以应用的关键是一定要清楚:1,、元素是什么;2、元素的公共特性是什么.16.如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥DQ,则a的值等于. 参考答案:2【考点】直线与平面垂直的性质. 【专题】计算题;空间位置关系与距离. 【分析】利用三垂线定理的逆定理、直线与圆相切的判定与性质、矩形的性质、平行线的性质即可求出. 【解答】解:连接AQ,取AD的中点O,连接OQ. ∵PA⊥平面ABCD,PQ⊥DQ, ∴由三垂线定理的逆定理可得DQ⊥AQ. ∴点Q在以线段AD的中点O为圆心的圆上, 又∵在BC上有且仅有一个点Q满足PQ⊥DQ,∴BC与圆O相切,(否则相交就有两点满足垂直,矛盾.) ∴OQ⊥BC, ∵AD∥BC,∴OQ=AB=1,∴BC=AD=2, 即a=2. 故答案为:2. 【点评】本题体现转化的数学思想,转化为BC与以线段AD的中点O为圆心的圆相切是关键,属于中档题. 17.设实数,若仅有一个常数c使得对于任意的,都有满足方程,则实数a的值为____.参考答案:3【分析】由可以用表达出,即,转化为函数的值域问题求解.【详解】,,,则,函数在上单调递减,则,所以,则,因为有且只有一个常数符合题意,所以,解得,,故实数的值为3.所以本题答案为3.【点睛】本题考查函数与方程思想,需要有较强的转化问题的能力,属中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题12分)已知函数,(,其图象在点处的切线方程为(1)求、的值;(2)求函数的单调区间,并求在区间[—2,2]上的最大值.命题意图:基础题。考查最基本的导数的几何意义及应用。参考答案:(1)由条件知,,,易得…………6分

(2)由上知,则令得,则时,单增。时,单减。时,单增…………10分当时,最大值只可能在及处取得而<在区间[—2,2]上的最大值为…………12分19.盒子有大小和形状完全相同的3个红球、2个白球和2个黑球,从中不放回地依次抽取2个球.(1)求在第1次抽到红球的条件下,第2次又抽到红球的概率;(2)若抽到1个红球记0分,抽到1个白球记1分,抽到1个黑球记2分,设得分为随机变量X,求随机变量X的数学期望.参考答案:(I)设“第1次抽到红球”为事件A,“第2次抽到红球”事件B,则“第1次和2次都抽到红球”就是事件AB.

(II)随机变量可能取的值为0,1,2,3,4

随机变量的分布列为01234

20.已知函数,其中a,b∈R.(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)若对于任意的,不等式f(x)≤10在上恒成立,求b的取值范围.参考答案:【考点】6E:利用导数求闭区间上函数的最值;7E:其他不等式的解法.【分析】(Ⅰ)根据导数的几何意义即为点的斜率,再根据f(x)在点P(2,f(2))处的切线方程为y=3x+1,解出a值;(Ⅱ)由题意先对函数y进行求导,解出极值点,因极值点含a,需要分类讨论它的单调性;(Ⅲ)已知,恒成立的问题,要根据(Ⅱ)的单调区间,求出f(x)的最大值,让f(x)的最大值小于10就可以了,从而解出b值.【解答】解:(Ⅰ)解:,由导数的几何意义得f'(2)=3,于是a=﹣8.由切点P(2,f(2))在直线y=3x+1上可得﹣2+b=7,解得b=9.所以函数f(x)的解析式为.(Ⅱ)解:.当a≤0时,显然f'(x)>0(x≠0).这时f(x)在(﹣∞,0),(0,+∞)上内是增函数.当a>0时,令f'(x)=0,解得.当x变化时,f'(x),f(x)的变化情况如下表:xf′(x)+0﹣﹣0+f(x)↗极大值↘↘极小值↗所以f(x)在,内是增函数,在,(0,)内是减函数.综上,当a≤0时,f(x)在(﹣∞,0),(0,+∞)上内是增函数;当a>0时,f(x)在,内是增函数,在,(0,)内是减函数.(Ⅲ)解:由(Ⅱ)知,f(x)在上的最大值为与f(1)的较大者,对于任意的,不等式f(x)≤10在上恒成立,当且仅当,即,对任意的成立.从而得,所以满足条件的b的取值范围是.【点评】本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.21.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.参考答案:【考点】余弦定理;正弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论