




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年河南省商丘市古王集乡联合中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若等差数列的前5项和=(
) A.12 B.13 C.14 D.15参考答案:B略2.过圆内一点(5,3),有一组弦的长度组成等差数列,最小弦长为该数列的首项,最大弦长为数列的末项,则的值是(
)A、10
B、18
C、45
D、54参考答案:C略3.已知{an}为等比数列,Sn是它的前n项和.若a2?a3=2a1,且a4与2a7的等差中项为,则S5=()A.31 B.32 C.33 D.34参考答案:A【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】设等比数列{an}的公比为q,由已知可得q和a1的值,代入等比数列的求和公式可得.【解答】解:设等比数列{an}的公比为q,则可得a1q?a1q2=2a1,即a4=a1q3=2,又a4与2a7的等差中项为,所以a4+2a7=,即2+2×2q3=,解得q=,可得a1=16,故S5==31.故选:A.【点评】本题考查等比数列的通项公式和求和公式,涉及等差数列的性质,属基础题.4.从一个正方体的8个顶点中任取3个,则以这3个点为顶点构成等边三角形的概率为(
)A.
B.
C.
D.参考答案:A略5.若有一组数据的总偏差平方和为120,相关指数为0.6,则回归平方和为(
)A.60
B.72
C.48
D.120参考答案:B6. 下列命题中的真命题是(
) A.,使得 B.使得C.都有 D.都有参考答案:C略7.设等比数列的公比,前项和为,则的值为(
)(A)
(B)
(C)
(D)参考答案:B8.以下四个命题中正确的是()A.空间的任何一个向量都可用其他三个向量表示B.若为空间向量的一组基底,则构成空间向量的另一组基底C.为直角三角形的充要条件是D.任何三个不共线的向量都可构成空间向量的一组基底参考答案:B略9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.9日 B.8日 C.16日 D.12日参考答案:A【考点】等比数列的前n项和.【分析】良马每日行的距离成等差数列,记为{an},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{bn},其中b1=97,d=﹣0.5.求和即可得到答案.【解答】解:由题意知,良马每日行的距离成等差数列,记为{an},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{bn},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+am+b1+b2+…+bm=103m++97m+=2×1125,解得:m=9.故选:A.10.在下列各数中,最大的数是(
)A.
B.C、
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的准线方程为_____.参考答案:【分析】本题利用抛物线的标准方程得出抛物线的准线方程。【详解】由抛物线方程可知,抛物线的准线方程为:.故答案:.【点睛】本题考查抛物线的相关性质,主要考查抛物线的简单性质的应用,考查抛物线的准线的确定,是基础题。12.设数列的前n项和为,令=,称为数列的“理想数”,已知数列的“理想数”为101,那么数列2,的“理想数”为___________.参考答案:102略13.某公司生产三种型号A、B、C的轿车,产量分别为1200辆、6000辆、2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A的轿车应抽取
▲
辆.参考答案:6
略14.已知复数z在复平面内对应的点为(1,2),则
.参考答案:
15.设z的共轭复数是,若,,则等于__________.参考答案:【分析】可设,由,可得关于a,b的方程,即可求得,然后求得答案.【详解】解析:设,因为,所以,又因为,所以,所以.所以,即,故.【点睛】本题主要考查共轭复数的概念,复数的四则运算,难度不大.16.若某一离散型随机变量ξ的概率分布如下表,且E(ξ)=1.5,则a﹣b的值为.ξ0123P0.1ab0.1
参考答案:0【考点】离散型随机变量的期望与方差.【专题】概率与统计.【分析】利用离散型随机变量的概率分布列的性质求解.【解答】解:由已知得:,解得a=b=0.4,∴a﹣b=0.故答案为:0.【点评】本题考查概率之差的求法,考查离散型随机变量的分布列的性质的应用,是基础题,解题时要认真审题,在历年高考中都是必考题型之一.17.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n=
.参考答案:192三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)求函数的导数;
(2)设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12,求a,b,c的值;参考答案:(2);19.已知函数f(x)=ax3+bx2﹣3x(a,b∈R),曲线y=f(x)在点(1,f(1))处的切线方程为y=-2.(1)求函数f(x)的解析式;(2)若对于[-2,2]上任意x1,x2都有|f(x1)﹣f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.参考答案:(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可;(2)由题意,对于定义域内任意自变量都使得|f(x1)﹣f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解;(3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解.解:(1)f'(x)=3ax2+2bx﹣3.根据题意,得即解得所以f(x)=x3﹣3x.(2)令f'(x)=0,即3x2﹣3=0.得x=±1.列表如下:所以当x∈[﹣2,2]时,f(x)max=2,f(x)min=﹣2.因此对于[﹣2,2]上的任意x1,x2,都有|f(x1)﹣f(x2)|≤|f(x)max﹣f(x)min|=4,所以c≥4.所以c的最小值为4.(3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x0,y0).则y0=x03﹣3x0.因为f'(x0)=3x02﹣3,所以切线的斜率为3x02﹣3.则3x02﹣3=,即2x03﹣6x02+6+m=0.因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,所以方程2x03﹣6x02+6+m=0有三个不同的实数解.所以函数g(x)=2x3﹣6x2+6+m有三个不同的零点.则g'(x)=6x2﹣12x.令g'(x)=0,则x=0或x=2.当x∈(﹣∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减;所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足:,即,解得﹣6<m<2.20.设是由个有序实数构成的一个数组,记作:.其中称为数组的“元”,称为的下标.如果数组中的每个“元”都是来自数组中不同下标的“元”,则称为的子数组.定义两个数组,的关系数为.(Ⅰ)若,,设是的含有两个“元”的子数组,求的最大值;(Ⅱ)若,,且,为的含有三个“元”的子数组,求的最大值.参考答案:(Ⅰ)依据题意,当时,取得最大值为2.
(Ⅱ)①当是中的“元”时,由于的三个“元”都相等,及中三个“元”的对称性,可以只计算的最大值,其中.由,得.当且仅当,且时,达到最大值,于是.
②当不是中的“元”时,计算的最大值,由于,所以.,当且仅当时,等号成立.即当时,取得最大值,此时.综上所述,的最大值为1.略21.已知函数
(I)求f(x)在(e为自然对数的底数)处的切线方程.(II)求f(x)的最小值.参考答案:(I);(II)【分析】(I)对函数求导,把分别代入导数与原函数中求出,,由点斜式即可得到切线方程;(II)求出函数的定义域,分别令导数大于零和小于零,结合定义域,解出的范围即可得到函数的单调区间,由此求出的最小值。【详解】(I),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第15课《我们不乱扔》教学设计-2024-2025学年一年级道德与法治上册统编版
- 展览馆装修合同
- 2025年度建筑企业农民工劳动合同创新模式试点方案
- 2025年度五星级酒店与VIP客人个性化服务协议
- 2025年度房产赠与与可持续发展合同
- 2025年度冷链物流货运损坏赔偿协议书
- 二零二五年度人工智能教育平台合作协议中的支付及费用分摊细则
- 2025年度带宠物友好房屋出租协议电子版
- 2025年度广告代理合同解除通知期限与费用结算规范
- 2025年度报废车买卖及报废车辆拆解与环保设施投资合同
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- (新教材)青岛版六三制四年级下册科学全册教案(含教学计划)
- 部编2023版道德与法治六年级下册活动园问题及答案
- 洞顶回填技术交底
- 最简易的帕累托图制作方法简介PPT通用课件
- 城市轨道交通应急处理课程标准
- 初二下分式混合计算练习1(附答案)
- (完整版)振幅调制与解调习题及其解答
- 抗震支架施工安装合同
- JJG 657-2019 呼出气体酒精含量检测仪 检定规程(高清版)
- 政法书记在全县公安工作会议上的讲话
评论
0/150
提交评论