版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章动态规划法
2020/12/171ppt课件动态规划是贝尔曼在50年代作为多段决策过程研究出来的,现已在许多技术领域中获得广泛应用。动态规划是一种分段最优化方法,它既可用来求解约束条件下的函数极值问题,也可用于求解约束条件下的泛函极值问题。它与极小值原理一样,是处理控制矢量被限制在一定闭集内,求解最优控制问题的有效数学方法之一。2020/12/172ppt课件精品资料你怎么称呼老师?如果老师最后没有总结一节课的重点的难点,你是否会认为老师的教学方法需要改进?你所经历的课堂,是讲座式还是讨论式?教师的教鞭“不怕太阳晒,也不怕那风雨狂,只怕先生骂我笨,没有学问无颜见爹娘……”“太阳当空照,花儿对我笑,小鸟说早早早……”动态最优的核心是最优性原理,它首先将一个多段决策问题转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始段状态为止的一套求解最优策略的完整方法。下面先介绍动态规划的基本概念,然后讨论连续型动态规划。2020/12/175ppt课件一、多段决策问题动态规划是解决多段决策过程优化问题的一种强有力的工具。所谓多段决策过程,是指把一个过程按时间或空间顺序分为若干段,然后给每一步作出“决策”(或控制),以使整个过程取得最优的效果。2020/12/176ppt课件如图1所示,对于中间的任意一段,例如第k+1段作出相应的“决策”(或控制)uk后,才能确定该段输入状态与输出状态间的关系,即从xk变化到xk+1的状态转移规律。在选择好每一段的“决策”(或控制)uk以后,那么整个过程的状态转移规律从x0经xk一直到xN也就被完全确定。全部“决策”的总体,称为“策略”。
2020/12/177ppt课件当然,如果对每一段的决策都是按照使某种性能指标为最优的原则作出的,那么这就是一个多段最优决策过程。图1多段决策过程示意图2020/12/178ppt课件容易理解,在多段决策过程中,每一段(如第k+1段)的输出状态(xk+1)都仅仅与该段的决策(uk)及该段的初始状态(xk)有关。而与其前面各段的决策及状态的转移规律无关。这种性质称为无后效性。下面以最优路线问题为例,来讨论动态规划求解多段决策问题。2020/12/179ppt课件设汽车从A城出发到B城,途中需穿越三条河流,它们各有两座桥P、Q可供选择通过,如图2所示。各段间的行车时间(或里程、费用等)已标注在相应段旁。问题是要确定一条最优行驶路线,使从A城出发到B城的行车时间最短。2020/12/1710ppt课件2020/12/1711ppt课件现将A到B分成四段,每一段都要作一最优决策,使总过程时间为最短。所以这是一个多段最优决策问题。由图2可知,所有可能的行车路线共有8条。如果将各条路线所需的时间都一一计算出来,并作一比较,便可求得最优路线是AQ1P2Q3B,历时12。这种一一计算的方法称为穷举算法。这种方法计算量大,如本例就要做3×23=24次加法和7次比较。如果决策一个n段过程,则共需(n-1)2n-1次加法和(2n-1-1)次比较。可见随着段数的增多,计算量将急剧增加。2020/12/1712ppt课件应用动态规划法可使计算量减少许多。动态规划法遵循一个最优化原则:即所选择的最优路线必须保证其后部子路线是最优的。例如在图2中,如果AQ1P2Q3B是最优路线,那么从这条路线上任一中间点到终点之间的一段路线必定也是最优的。否则AQ1P2Q3B就不能是最优路线了。2020/12/1713ppt课件根据这一原则,求解最优路线问题,最好的办法就是从终点开始,按时间最短为目标,逐段向前逆推。依次计算出各站至终点之间的时间最优值,并据此决策出每一站的最优路线。如在图2中,从终点B开始逆推。2020/12/1714ppt课件最后一段(第四段):终点B的前站是P3或Q3,不论汽车先从哪一站始发,行驶路线如何,在这最后一段,总不外乎是从P3到B,历时为4,或从Q3到B,历时为2,将其标明在图3中相应的圆圈内。比较P3与Q3这一最后一段最优决策为Q3B。2020/12/1715ppt课件最后一段(第四段):终点B的前站是P3或Q3,不论汽车先从哪一站始发,行驶路线如何,在这最后一段,总不外乎是从P3到B,历时为4,或从Q3到B,历时为2,将其标明在图3中相应的圆圈内。比较P3与Q3这一最后一段最优决策为Q3B。2020/12/1716ppt课件第三段:P3、Q3的前站是P2、Q2。在这一段也不论其先后的情况如何,只需对从P2或Q2到B进行最优决策。从P2到B有两条路线:P2P3B,历时为6;P2Q3B,历时为4,取最短历时4,标注在P2旁。从Q2到B也有两条路线:Q2P3B,历时为7;Q2Q3B,历时为5,取最短历时5,标注在Q2旁。比较P2与Q2的最优值,可知这一段的最优路线是P2Q3B。2020/12/1717ppt课件第二段:P2、Q2的前站是P1、Q1。同样不管汽车是如何到达的P1、Q1,重要的是保证从P1或Q1到B要构成最优路线。从P1到B的两条路线中,P1P2Q3B,历时为11;P1Q2Q3B,历时为11,取最短历时11,标注在P1旁。从Q1到B的也有两条路线中,Q1P2Q3B,历时为8;Q1Q2Q3B,历时为13,取最短历时8,标注在Q1旁。比较P1与Q1的最优值,可知这一段的最优路线是Q1P2Q3B。2020/12/1718ppt课件第一段:P1、Q1的前站是始发站A。显见从A到B的最优值为12,故得最优路线为AQ1P2Q3B。2020/12/1719ppt课件综上可见,动态规划法的特点是:1)与穷举算法相比,可使计算量大大减少。如上述最优路线问题,用动态规划法只须做10次加法和6次比较。如果过程为n段,则需做加法。以上例为例,用穷举法需作4608次加法,而后者只需做34次加法。2020/12/1720ppt课件2)最优路线的整体决策是从终点开始,采用逆推方法,通过计算、比较各段性能指标,逐段决策逐步延伸完成的。全部最优路线的形成过程已充分表达在图3中。从最后一段开始,通过比较P3、Q3,得到Q3B;倒数第二段,通过比较P2、Q2,得到P2Q3B;倒数第三段,通过比较P1、Q1,得到最优决策为Q1P2Q3B;直至最后形成最优路线AQ1P2Q3B。象这样将一个多段决策问题转化为多个单段决策的简单问题来处理,正是动态规划法的重要特点之一。2020/12/1721ppt课件3)动态规划法体现了多段最优决策的一个重要规律,即所谓最优性原理。它是动态规划的理论基础。2020/12/1722ppt课件对图4所示的N段决策过程,如果在第k+1段处把全过程看成前k段子过程和后N-k段子过程两部分。对于后部子过程来说,xk可看作是由x0及前k段初始决策(或控制)u0,u1,…,uk-1所形成的初始状态。那么,多段决策的最优决策略具有这样的性质:不论初始状态和初始决策如何,其余(后段)决策(或控制)对于由初始决策所形成的状态来说,必定也是一个最优策略。这个性质称为最优性原理。2020/12/1723ppt课件图4N段决策过程2020/12/1724ppt课件设图5中x*(t)是连续系统的一条最优轨线。x(t1)是最优轨线上的一点,那么最优性原理说明,不管t=t1,t0<t1<tf时,系统是怎样转移到状态x(t1)的,但从x(t1)到x(tf)这段轨线必定是最优的。因为最优轨线的后一段从x(t1)到x(tf)如果还有另一条轨线是最优的话,那么原来从x(t0)到x(tf)的轨线就不是最优的,这与假设矛盾。因此,最优性原理成立。2020/12/1725ppt课件应用最优性原理可以将一个N段最优决策问题转化为N个一段最优决策问题,从而大大减少求解最优决策问题的计算量。图5连续系统的状态转移过程2020/12/1726ppt课件图5连续系统的状态转移过程2020/12/1727ppt课件二、连续系统的动态规划利用动态规划最优性原理,可以推导出性能泛函为极小应满足的条件——哈密尔顿-雅可比方程。它是动态规划的连续形式,解此方程可求得最优控制u*(t)。现在来推导这一方程。2020/12/1728ppt课件设连续方程为(1)终端约束使性能泛函求最优控制u*(t),或u任意。初始状态(2)(3)(4)2020/12/1729ppt课件根据最优性原理,如果x*(t)是以x(t0)为初始状态的最优轨线。如图6所示。图6连续系统最优轨线2020/12/1730ppt课件(5)设t=t′
(t0<t′<tf)时,状态为x(t′),它将轨线分成前后两半断。那么以x(t′)为初始状态的后半段也必是最优轨线。而与系统先前如何到达x(t′)无关。若取t0=t,t′=t+∆t,式(4)可写成2020/12/1731ppt课件根据最优性原理,如果t到tf的过程是最优的,则从t+∆t到tf的后部子过程也是最优的,其中t<t+∆t<tf。因此可写成(6)(7)当∆t很小时,有2020/12/1732ppt课件式(5)可近似表示为(8)(5)2020/12/1733ppt课件将x(t+∆t)进行泰勒展开,取一次近似,有(9)(10)(11)2020/12/1734ppt课件将上式在[x,t]领域展成泰勒级数,考虑到J*[x+∆x,t+∆t]既是x的函数,也与t有关,所以(12)(8)2020/12/1735ppt课件代入式(8),得(13)(12)(8)2020/12/1736ppt课件考察上式因为J*[x,t]与u无关,故J*[x,t]与可提到min号外面。经整理可得式(14)称为连续系统动态规划基本方程或贝尔曼方程。(14)2020/12/1737ppt课件贝尔曼方程。它是一个关于J*[x,t]的偏微分方程。解此方程可求得最优控制使J为极小。它的边界条件为
(15)(14)2020/12/1738ppt课件如果令哈密尔顿函数为式中则式(14)可写成(17)(16)2020/12/1739ppt课件当控制矢量u(t)不受限制时,则有上两式称为哈密尔顿-雅可比方程。上式说明,在最优轨线上,最优控制必须使H达全局最小。实际上这就是极小值原理的另一种形式。(18)2020/12/1740ppt课件由贝尔曼方程可推导出协态方程和横截条件。式(14)可写成对x求偏导数,得(20)(19)(14)2020/12/1741ppt课件由于对t的全导数,为(22)(21)代入式(20)可写成(20)2020/12/1742ppt课件令,则上式可写成(23)这就是所求的协态方程,与以前结果完全一致。(22)2020/12/1743ppt课件在t=tf时,在终端处性能泛函为式中μ——与N同维的乘子矢量。(24)2020/12/1744ppt课件对x(tf)求偏导数,得(25)(26)即(24)2020/12/1745ppt课件将式(24)对tf求偏导数,得(27)(24)2020/12/1746ppt课件考虑式(17)、式(20)得上述结果与极小值原理中推导的完全一致。上述推导过程实际上等于用动态规划方法间接证明了极小值原理。(28)(17)(20)(27)2020/12/1747ppt课件应当指出,与极小值原理相比,动态规划法需要解偏微分方程式(14),它要求J[x,t]具有连续的偏导数,但在实际工程中,这一点常常不能满足,因而限制了动态规划法的使用范围。2020/12/1748ppt课件例1:设,求最优控制u*(t)使2020/12/1749ppt课件解:构造哈密尔顿函数根据哈密尔顿-雅可比方程,有2020/12/1750ppt课件考虑控制u不受限制,得2020/12/1751ppt课件故2020/12/1752ppt课件边界条件,因Φ[x(tf),tf]=0,故J[x(tf)]=0如果令,则得这正是应用极小值原理所得的结果,二者完全一致。2020/12/1753ppt课件例2:设受控系统状态方程为初始状态为性能泛函为试求在u无限制情况下,使J取极小时的最优控制。2020/12/1754ppt课件解:构造哈密尔顿函数2020/12/1755ppt课件由哈密尔顿-雅可比方程因u无限制,可从求得2020/12/1756ppt课件代入上式,并注意到J*与t无关,因而,有2020/12/1757ppt课件为求解此偏微分方程,设其解为满足方程,得2020/12/1758ppt课件各项系数为可得解为最优控制2020/12/1759ppt课件最优控制可由状态反馈实现,如图7所示。2020/12/1760ppt课件进一步考察系统的状态轨线。系统的状态方程为齐次方程。2020/12/1761ppt课件它的解为2020/12/1762ppt课件于是最优控制为性能泛函最优值为2020/12/1763ppt课件例3:设受控系统的微分方程为使性能指标即要求快速响应,求最优控制u*,且满足。202
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商铺租赁解除协议范本:双方终止协议一
- 2024年化妆品OEM加工合同
- 2024年度保险合同标的及服务内容2篇
- 2024年度产品代销协议
- 2024年协议担保方义务说明电子版下载版
- 2024年学生暑假兼职劳动协议模板版B版
- 2024年国际贸易合作协议样本文件版
- 2024年土石方工程承运协议版
- 2024年室内仿真植物墙装饰工程施工合作合同版B版
- 2024年度体育运动俱乐部会员服务合同
- 专题9 测电阻、电功率的方法 电路设计问题
- 营销顾问合同范本
- 护理三基知识复习题(附参考答案)
- 人教PEP版六年级上册英语Unit 6 How do you feel单元整体教学设计
- 2024新版《药品管理法》培训课件
- 信息科技大单元教学设计之七年级第一单元探寻互联网新世界
- 上海市建筑施工风险管控与隐患排查实施导则
- 2024年国家公务员考试《行测》真题卷(行政执法)答案和解析
- 消化内科五年发展规划
- 多水源联合调度技术
- 2024年新人教版七年级上册数学教学课件 6.2 直线、射线、线段 习题 6.2
评论
0/150
提交评论