版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结构优化和鲁棒性设计顾镭博士徐有忠博士奇瑞汽车公司奇瑞乘用车工程研究院Background:Analysisvs.DesignNumericalOptimizationMultidisciplinaryDesignOptimization(MDO)SafetyOptimizationBackground:SafetyScopeandChallengesCAEChallengesandSolutionTechnologiesStructuralOptimizationCrashPulseOptimizationMDOApplicationsTopologyOptimizationShapeOptimizationRestraintSystemOptimizationFutureDirectionsOutlineAnalysisandDesignOptimizationMethodsOptimalityCriteriaMethods(indirectmethods)OptimalitycriteriaaretheconditionsafunctionmustsatisfyatitsminimumpointStudyofoptimalityconditionsarenecessaryregardlessofthemethodused.SearchMethods(directsearchmethods)
Math.Programming
Mostgeneral
RequireF,h,g,dF/dx,dh/dxdg/dxxk+1=xk+ak
Skx1x2OptimizationinComputationalMechanicsF,g,&hareimplicitfunctionsofx.
ExactevaluationrequirescompleteFEA.SensitivitiesofF,g&hmayrequiremoreeffortsthananalysisitself.Numbersofconstraintsgi&xmaybeverylarge.FinddesignvariableXthatwillMinimizeF(X)Subjecttogi(X)£0,hj(X)=0,Xl
£
X£
XuApproximateOptimizationAnalysis+GradientsApproximationOptimizationInnerLoopOptimizationAnalysisOuterLoopAnalysisApproximationOptimizationDOEOuterLoopInnerLoopMultidisciplinaryDesignOptimization
(MDO)isamethodologyforimprovingdesignofengineeringsystems,e.g.,automobile,aircraft,orspacecraft,inwhicheverythinginfluenceseverythingelse.-ByDr.J.Sobieski-NASALangleyWhatisMDOMDO(continued)EffectiveIntegrationofIndividualDisciplines/SubsystemstoCapturetheInteractionsNovelSolutionProcedurestoEnableSystemLevelSolutionsCharacteristics:Large-Scale,NeedsDecomposition,ComputationIntensive,MultipleSimulationsCFDStructuresControlsLoadsDeformationControlSurfaceDeflnsStressPressureMomentsDesignspacediscipline1Designspacediscipline2DesignVariablesPerformanceMultidisciplinaryOptimalDesignDiscipline1OptimumFeasible
Design
SpaceSuboptimalDesignConventionalTradesMDOSearchDiscipline2OptimumSafetyCAEChallenges/SolutionTechnologiesSimulationToolNotRobustorImmatureVerificationandValidationMethodsHighlyUndeterministicRobustDesignComputationIntensive(Structure)ResponseSurfaceMethodHighlyNonlinearorEvenDiscontinuous(RestraintSystem)GeneticAlgorithmManyConflictingRequirementsOptimizationManydesignVariablesHighPerformanceComputing(HPC)?(nosolutionyet)StructuralOptimization
(DOE/ResponseSurfaceApproach)ConventionalApproachSOARApproachTooexpensiveComputationaffordableSequentialParallel/HighPerformanceComputationLocaloptimalGlobaloptimalSensitivitybasedOptimalLatinHyperCube/SurrogatemodelsSingleDisciplineMultidisciplinaryReliabilityBasedRobustDesignAccuracy/Convergence?RobustnessAssessment&Design(MonteCarloetc.)STOPAddNewPointstoReconstructRSDefineOptimizationProblem:Objective,Constraints,DesignVariables(DV)SelectSamplingMethod:2/3levelDOE,Supersaturated,LatinHypercube
etc.ReduceDVNo.(basedoncomputerresources)ConstructResponseSurface(RS):NN,EMARS,Polynomial,StepwiseRegressionetc.NumericalOptimizationbasedonRSConfirmationRunsforOptimalDesignsYesNoOptimizationandRobustDesignStrategyUniformLatinHypercubeSampling(ParallelSimulations)SecondOrderResponseSurfaceSubsetSelectionGlobalOptimization/MixedVariableAlgorithm/SQPReliabilityBasedRobustOptimization
(Guetal,“MultidisciplinaryDesignOptimizationofaFullVehiclewithHighPerformanceComputing”,AIAA-2001-1273)
UniformLatinHypercubeSamplingUniformLatinhypercubeseeksdesignpointsthatuniformlyscatteredonthedomain.(Fangetal,UniformDesign:TheoryandApplication,2000)MeasurementsofuniformityL2discrepancy(Warnock,1972)CenteredL2discrepancy(Hickernell,1998)
UniformLatinHypercubeSamplingMin.num.ofsimulations=3num.ofdesignvariablesFactorialDesignLatinHypecubeUniformLatinHypecubeGoal:within45simulationsforeachcrashmode.SubsetRegressionSecondorderresponsesurfaceRegressionbysubsetselection(A.J.Miller,SubsetSelectioninRegression,ChapmanandHall,1990)E.g.HIC=359.4-2.83x1+76.3x2x10-34.84x9x9+0.3x3-3.87x4x10+2.7x4+0.2x5QualityoftheresponsesurfaceismeasuredbyResidualSumofSquares(RSS)Stepwiseregression(Efroymsonalgorithm)SequentialReplacementAlgorithmSequentialReplacementAlgorithm(SRA) Startingsubset:y=a0+a1x1+…+an
xnReplacementcandidates:x12,x22,…,xn2,x1x2,x1x3,…,x1xn,x2x3,…,xn-1xn Startingsubset:y=a0+a1x1+…+an
xn
RSS0
Iteration1:y=a0+a1x12+…+an
xn
RSS1
Iteration2:y=a0+a1x22+…+an
xn RSS2 …………Iterationm:y=a0+a1
xn-1xn+…+an
xn RSSm
LetRSSk
=Min{RSSi},thenStartingsubset:y=a0+a1
pk(x)+a2x2+…+an
xn
…………Application:FrontEndOptimization35mphFrontimpactintoaRigidWall40mphFrontOffsetImpactintoaDeformableBarrierApplication:VehicleFrontEndOptimizationSummaryofFrontEndOptimizationDesignVariables(10):GagesandMaterialsofRail,Shotgun,Subframe,Brace,Cross-member,Rocker,Sill,etc.TotalNumberofSimulations:72CPUofEachSimulation:70hrsonSGIOrigin2000(front)and100hrs(Offset)FEMmodels:C.O’Connor,M.El-BkallyandT.QuExampleofOptimizationandRobustnessAssessmentRisksof“Optimized”Design:ActiveConstraints
–uncertainty,variationleadstofaileddesignsOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignSensitive“peak”solutions–smallchangesininputsresultsinsignificantlossofperformanceEffectofUncertainty:PerformanceVariationSearchforreliablestructuraldesigns:feasiblewithrespecttodeterministicconstraintsmeetadesiredminimumlevelofReliabilitydonotexceedamaximumProbabilityofFailureHastheeffectofpullingdeterministicoptimizationsolutionsawayfromtheconstraintsInitialProbabilityofFailure,PfY1Robust,ReliableSolutionconstraintReliabilityBasedDesignoptimization:BenefitsOptimalSolutionReliability“Shift”andRobust“Shrink”SafetyFactor?Optimization?OrRobust?Focus:AddressingUncertainty,DesigningforQualityImplementation: SixSigmaBasedRobustDesignOptimization(iSIGHT)
PerformanceMeasureApproach(PMA)ReliabilityBasedDesignOptimizationSourcesofVariabilityMaterialrelatedMaterialpropertiesThicknessManufacturingrelatedFormingprocessesMachiningprocessesAssemblyprocessesTestconditionsEnvironmentsHumanFactorsActualvs.expecteduseModelingTechniquesNumericalalgorithmscontrolsConstitutivemodelsComputerhardwareReliabilityBasedDesignOptimizationMethodologiesMinimize Costf(x)Subjectto P[Gi(x)0]
Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodPerformanceMeasureApproach(PMA) (K.K.Choi,Univ.ofIowa)RobustDesignMinimize Variationoff(x)( )Subjectto P[Gi(x)0]
Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodHasofer-LindMethod(DoubleLoop)Inputm(k)xLoopforeachGjtocomputerbj.OptimizationLoopforcostfunctiontoupdatemx
Converge?stopyesnoStartNumberofFunctionEvaluationSingleLoopSingleVectorMethod(Chenetal,1997)startComputermConstraintDerivativesComputera(0)janda*(0)Computerm(0)x=x(0)+b0sxa
*(0)CallOptimizer(SQP)toupdatemx
Computerx(k)=m(k)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期梅毒母婴传播的阻断策略与效果
- 车间安全员试题及答案
- 妇幼健康与老龄化社会应对策略
- 女性职业人群专项体检项目设计
- 大数据在职业暴露评价中的整合
- 大数据分析驱动医疗纠纷精准预防策略-1
- 法律形成性考试及答案
- 听力考试山东题目及答案
- 2025年高职第一学年(模具设计与制造)模具CAM阶段测试题及答案
- 2026年岗位能力综合测试(岗位适配性评估)试题及答案
- 锦州市高三语文试卷及答案
- 化学品供应商审核细则
- 塔吊拆除安全管理培训课件
- 冬季环卫车辆安全培训课件
- 2025至2030中国焊丝和焊条行业项目调研及市场前景预测评估报告
- 高速防滑防冻安全知识培训课件
- 电气线路安全知识培训课件
- 监控设备安装施工方案
- DIP医保付费培训课件
- 《计算机网络技术基础》课程思政方案
- 腰痛的中医治疗
评论
0/150
提交评论