




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结构优化和鲁棒性设计顾镭博士徐有忠博士奇瑞汽车公司奇瑞乘用车工程研究院Background:Analysisvs.DesignNumericalOptimizationMultidisciplinaryDesignOptimization(MDO)SafetyOptimizationBackground:SafetyScopeandChallengesCAEChallengesandSolutionTechnologiesStructuralOptimizationCrashPulseOptimizationMDOApplicationsTopologyOptimizationShapeOptimizationRestraintSystemOptimizationFutureDirectionsOutlineAnalysisandDesignOptimizationMethodsOptimalityCriteriaMethods(indirectmethods)OptimalitycriteriaaretheconditionsafunctionmustsatisfyatitsminimumpointStudyofoptimalityconditionsarenecessaryregardlessofthemethodused.SearchMethods(directsearchmethods)
Math.Programming
Mostgeneral
RequireF,h,g,dF/dx,dh/dxdg/dxxk+1=xk+ak
Skx1x2OptimizationinComputationalMechanicsF,g,&hareimplicitfunctionsofx.
ExactevaluationrequirescompleteFEA.SensitivitiesofF,g&hmayrequiremoreeffortsthananalysisitself.Numbersofconstraintsgi&xmaybeverylarge.FinddesignvariableXthatwillMinimizeF(X)Subjecttogi(X)£0,hj(X)=0,Xl
£
X£
XuApproximateOptimizationAnalysis+GradientsApproximationOptimizationInnerLoopOptimizationAnalysisOuterLoopAnalysisApproximationOptimizationDOEOuterLoopInnerLoopMultidisciplinaryDesignOptimization
(MDO)isamethodologyforimprovingdesignofengineeringsystems,e.g.,automobile,aircraft,orspacecraft,inwhicheverythinginfluenceseverythingelse.-ByDr.J.Sobieski-NASALangleyWhatisMDOMDO(continued)EffectiveIntegrationofIndividualDisciplines/SubsystemstoCapturetheInteractionsNovelSolutionProcedurestoEnableSystemLevelSolutionsCharacteristics:Large-Scale,NeedsDecomposition,ComputationIntensive,MultipleSimulationsCFDStructuresControlsLoadsDeformationControlSurfaceDeflnsStressPressureMomentsDesignspacediscipline1Designspacediscipline2DesignVariablesPerformanceMultidisciplinaryOptimalDesignDiscipline1OptimumFeasible
Design
SpaceSuboptimalDesignConventionalTradesMDOSearchDiscipline2OptimumSafetyCAEChallenges/SolutionTechnologiesSimulationToolNotRobustorImmatureVerificationandValidationMethodsHighlyUndeterministicRobustDesignComputationIntensive(Structure)ResponseSurfaceMethodHighlyNonlinearorEvenDiscontinuous(RestraintSystem)GeneticAlgorithmManyConflictingRequirementsOptimizationManydesignVariablesHighPerformanceComputing(HPC)?(nosolutionyet)StructuralOptimization
(DOE/ResponseSurfaceApproach)ConventionalApproachSOARApproachTooexpensiveComputationaffordableSequentialParallel/HighPerformanceComputationLocaloptimalGlobaloptimalSensitivitybasedOptimalLatinHyperCube/SurrogatemodelsSingleDisciplineMultidisciplinaryReliabilityBasedRobustDesignAccuracy/Convergence?RobustnessAssessment&Design(MonteCarloetc.)STOPAddNewPointstoReconstructRSDefineOptimizationProblem:Objective,Constraints,DesignVariables(DV)SelectSamplingMethod:2/3levelDOE,Supersaturated,LatinHypercube
etc.ReduceDVNo.(basedoncomputerresources)ConstructResponseSurface(RS):NN,EMARS,Polynomial,StepwiseRegressionetc.NumericalOptimizationbasedonRSConfirmationRunsforOptimalDesignsYesNoOptimizationandRobustDesignStrategyUniformLatinHypercubeSampling(ParallelSimulations)SecondOrderResponseSurfaceSubsetSelectionGlobalOptimization/MixedVariableAlgorithm/SQPReliabilityBasedRobustOptimization
(Guetal,“MultidisciplinaryDesignOptimizationofaFullVehiclewithHighPerformanceComputing”,AIAA-2001-1273)
UniformLatinHypercubeSamplingUniformLatinhypercubeseeksdesignpointsthatuniformlyscatteredonthedomain.(Fangetal,UniformDesign:TheoryandApplication,2000)MeasurementsofuniformityL2discrepancy(Warnock,1972)CenteredL2discrepancy(Hickernell,1998)
UniformLatinHypercubeSamplingMin.num.ofsimulations=3num.ofdesignvariablesFactorialDesignLatinHypecubeUniformLatinHypecubeGoal:within45simulationsforeachcrashmode.SubsetRegressionSecondorderresponsesurfaceRegressionbysubsetselection(A.J.Miller,SubsetSelectioninRegression,ChapmanandHall,1990)E.g.HIC=359.4-2.83x1+76.3x2x10-34.84x9x9+0.3x3-3.87x4x10+2.7x4+0.2x5QualityoftheresponsesurfaceismeasuredbyResidualSumofSquares(RSS)Stepwiseregression(Efroymsonalgorithm)SequentialReplacementAlgorithmSequentialReplacementAlgorithm(SRA) Startingsubset:y=a0+a1x1+…+an
xnReplacementcandidates:x12,x22,…,xn2,x1x2,x1x3,…,x1xn,x2x3,…,xn-1xn Startingsubset:y=a0+a1x1+…+an
xn
RSS0
Iteration1:y=a0+a1x12+…+an
xn
RSS1
Iteration2:y=a0+a1x22+…+an
xn RSS2 …………Iterationm:y=a0+a1
xn-1xn+…+an
xn RSSm
LetRSSk
=Min{RSSi},thenStartingsubset:y=a0+a1
pk(x)+a2x2+…+an
xn
…………Application:FrontEndOptimization35mphFrontimpactintoaRigidWall40mphFrontOffsetImpactintoaDeformableBarrierApplication:VehicleFrontEndOptimizationSummaryofFrontEndOptimizationDesignVariables(10):GagesandMaterialsofRail,Shotgun,Subframe,Brace,Cross-member,Rocker,Sill,etc.TotalNumberofSimulations:72CPUofEachSimulation:70hrsonSGIOrigin2000(front)and100hrs(Offset)FEMmodels:C.O’Connor,M.El-BkallyandT.QuExampleofOptimizationandRobustnessAssessmentRisksof“Optimized”Design:ActiveConstraints
–uncertainty,variationleadstofaileddesignsOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignSensitive“peak”solutions–smallchangesininputsresultsinsignificantlossofperformanceEffectofUncertainty:PerformanceVariationSearchforreliablestructuraldesigns:feasiblewithrespecttodeterministicconstraintsmeetadesiredminimumlevelofReliabilitydonotexceedamaximumProbabilityofFailureHastheeffectofpullingdeterministicoptimizationsolutionsawayfromtheconstraintsInitialProbabilityofFailure,PfY1Robust,ReliableSolutionconstraintReliabilityBasedDesignoptimization:BenefitsOptimalSolutionReliability“Shift”andRobust“Shrink”SafetyFactor?Optimization?OrRobust?Focus:AddressingUncertainty,DesigningforQualityImplementation: SixSigmaBasedRobustDesignOptimization(iSIGHT)
PerformanceMeasureApproach(PMA)ReliabilityBasedDesignOptimizationSourcesofVariabilityMaterialrelatedMaterialpropertiesThicknessManufacturingrelatedFormingprocessesMachiningprocessesAssemblyprocessesTestconditionsEnvironmentsHumanFactorsActualvs.expecteduseModelingTechniquesNumericalalgorithmscontrolsConstitutivemodelsComputerhardwareReliabilityBasedDesignOptimizationMethodologiesMinimize Costf(x)Subjectto P[Gi(x)0]
Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodPerformanceMeasureApproach(PMA) (K.K.Choi,Univ.ofIowa)RobustDesignMinimize Variationoff(x)( )Subjectto P[Gi(x)0]
Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodHasofer-LindMethod(DoubleLoop)Inputm(k)xLoopforeachGjtocomputerbj.OptimizationLoopforcostfunctiontoupdatemx
Converge?stopyesnoStartNumberofFunctionEvaluationSingleLoopSingleVectorMethod(Chenetal,1997)startComputermConstraintDerivativesComputera(0)janda*(0)Computerm(0)x=x(0)+b0sxa
*(0)CallOptimizer(SQP)toupdatemx
Computerx(k)=m(k)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《汽车电工电子技术》高职汽车制造专业全套教学课件
- 二零二五年度联建工程合同(含智能电网)
- 二零二五年多功能对讲机租赁及升级服务合同
- 2025版个人二手房购房合同附属设施移交合同
- 2025茶青深加工产品开发与技术合作合同
- 二零二五版云计算技术服务合同泄密责任认定标准
- 2025版企业承债式股权转让及资产重组协议
- 2025年版新能源发电站安全操作协议书规范范本
- 2025茶园节能减排与绿色生产承包服务协议
- 2025版固定资产借款合同样本:科研机构专版
- 足太阳膀胱经
- 锂电池、新能源汽车火灾事故灭火救援处置
- 2025年英语四级考试试卷及答案
- 燃料油相关知识培训课件
- 在施工程以及近年已竣工工程合同履行情况
- 水泵保养操作规程
- 2025年高考数学必刷题分类:第2讲、常用逻辑用语(教师版)
- 《PPP模式下的老旧小区博弈研究国内外文献综述5100字》
- 2024年江苏省扬州市中考数学试卷(附答案)
- 2025重庆市建筑安全员C证考试题库
- Invitation letter - USA 外国人来华邀请函-美国
评论
0/150
提交评论