版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
结构优化和鲁棒性设计顾镭博士徐有忠博士奇瑞汽车公司奇瑞乘用车工程研究院Background:Analysisvs.DesignNumericalOptimizationMultidisciplinaryDesignOptimization(MDO)SafetyOptimizationBackground:SafetyScopeandChallengesCAEChallengesandSolutionTechnologiesStructuralOptimizationCrashPulseOptimizationMDOApplicationsTopologyOptimizationShapeOptimizationRestraintSystemOptimizationFutureDirectionsOutlineAnalysisandDesignOptimizationMethodsOptimalityCriteriaMethods(indirectmethods)OptimalitycriteriaaretheconditionsafunctionmustsatisfyatitsminimumpointStudyofoptimalityconditionsarenecessaryregardlessofthemethodused.SearchMethods(directsearchmethods)
Math.Programming
Mostgeneral
RequireF,h,g,dF/dx,dh/dxdg/dxxk+1=xk+ak
Skx1x2OptimizationinComputationalMechanicsF,g,&hareimplicitfunctionsofx.
ExactevaluationrequirescompleteFEA.SensitivitiesofF,g&hmayrequiremoreeffortsthananalysisitself.Numbersofconstraintsgi&xmaybeverylarge.FinddesignvariableXthatwillMinimizeF(X)Subjecttogi(X)£0,hj(X)=0,Xl
£
X£
XuApproximateOptimizationAnalysis+GradientsApproximationOptimizationInnerLoopOptimizationAnalysisOuterLoopAnalysisApproximationOptimizationDOEOuterLoopInnerLoopMultidisciplinaryDesignOptimization
(MDO)isamethodologyforimprovingdesignofengineeringsystems,e.g.,automobile,aircraft,orspacecraft,inwhicheverythinginfluenceseverythingelse.-ByDr.J.Sobieski-NASALangleyWhatisMDOMDO(continued)EffectiveIntegrationofIndividualDisciplines/SubsystemstoCapturetheInteractionsNovelSolutionProcedurestoEnableSystemLevelSolutionsCharacteristics:Large-Scale,NeedsDecomposition,ComputationIntensive,MultipleSimulationsCFDStructuresControlsLoadsDeformationControlSurfaceDeflnsStressPressureMomentsDesignspacediscipline1Designspacediscipline2DesignVariablesPerformanceMultidisciplinaryOptimalDesignDiscipline1OptimumFeasible
Design
SpaceSuboptimalDesignConventionalTradesMDOSearchDiscipline2OptimumSafetyCAEChallenges/SolutionTechnologiesSimulationToolNotRobustorImmatureVerificationandValidationMethodsHighlyUndeterministicRobustDesignComputationIntensive(Structure)ResponseSurfaceMethodHighlyNonlinearorEvenDiscontinuous(RestraintSystem)GeneticAlgorithmManyConflictingRequirementsOptimizationManydesignVariablesHighPerformanceComputing(HPC)?(nosolutionyet)StructuralOptimization
(DOE/ResponseSurfaceApproach)ConventionalApproachSOARApproachTooexpensiveComputationaffordableSequentialParallel/HighPerformanceComputationLocaloptimalGlobaloptimalSensitivitybasedOptimalLatinHyperCube/SurrogatemodelsSingleDisciplineMultidisciplinaryReliabilityBasedRobustDesignAccuracy/Convergence?RobustnessAssessment&Design(MonteCarloetc.)STOPAddNewPointstoReconstructRSDefineOptimizationProblem:Objective,Constraints,DesignVariables(DV)SelectSamplingMethod:2/3levelDOE,Supersaturated,LatinHypercube
etc.ReduceDVNo.(basedoncomputerresources)ConstructResponseSurface(RS):NN,EMARS,Polynomial,StepwiseRegressionetc.NumericalOptimizationbasedonRSConfirmationRunsforOptimalDesignsYesNoOptimizationandRobustDesignStrategyUniformLatinHypercubeSampling(ParallelSimulations)SecondOrderResponseSurfaceSubsetSelectionGlobalOptimization/MixedVariableAlgorithm/SQPReliabilityBasedRobustOptimization
(Guetal,“MultidisciplinaryDesignOptimizationofaFullVehiclewithHighPerformanceComputing”,AIAA-2001-1273)
UniformLatinHypercubeSamplingUniformLatinhypercubeseeksdesignpointsthatuniformlyscatteredonthedomain.(Fangetal,UniformDesign:TheoryandApplication,2000)MeasurementsofuniformityL2discrepancy(Warnock,1972)CenteredL2discrepancy(Hickernell,1998)
UniformLatinHypercubeSamplingMin.num.ofsimulations=3num.ofdesignvariablesFactorialDesignLatinHypecubeUniformLatinHypecubeGoal:within45simulationsforeachcrashmode.SubsetRegressionSecondorderresponsesurfaceRegressionbysubsetselection(A.J.Miller,SubsetSelectioninRegression,ChapmanandHall,1990)E.g.HIC=359.4-2.83x1+76.3x2x10-34.84x9x9+0.3x3-3.87x4x10+2.7x4+0.2x5QualityoftheresponsesurfaceismeasuredbyResidualSumofSquares(RSS)Stepwiseregression(Efroymsonalgorithm)SequentialReplacementAlgorithmSequentialReplacementAlgorithm(SRA) Startingsubset:y=a0+a1x1+…+an
xnReplacementcandidates:x12,x22,…,xn2,x1x2,x1x3,…,x1xn,x2x3,…,xn-1xn Startingsubset:y=a0+a1x1+…+an
xn
RSS0
Iteration1:y=a0+a1x12+…+an
xn
RSS1
Iteration2:y=a0+a1x22+…+an
xn RSS2 …………Iterationm:y=a0+a1
xn-1xn+…+an
xn RSSm
LetRSSk
=Min{RSSi},thenStartingsubset:y=a0+a1
pk(x)+a2x2+…+an
xn
…………Application:FrontEndOptimization35mphFrontimpactintoaRigidWall40mphFrontOffsetImpactintoaDeformableBarrierApplication:VehicleFrontEndOptimizationSummaryofFrontEndOptimizationDesignVariables(10):GagesandMaterialsofRail,Shotgun,Subframe,Brace,Cross-member,Rocker,Sill,etc.TotalNumberofSimulations:72CPUofEachSimulation:70hrsonSGIOrigin2000(front)and100hrs(Offset)FEMmodels:C.O’Connor,M.El-BkallyandT.QuExampleofOptimizationandRobustnessAssessmentRisksof“Optimized”Design:ActiveConstraints
–uncertainty,variationleadstofaileddesignsOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignOptimizationXYFeasibleInfeasible(safe)(failed)InitialDesignSensitive“peak”solutions–smallchangesininputsresultsinsignificantlossofperformanceEffectofUncertainty:PerformanceVariationSearchforreliablestructuraldesigns:feasiblewithrespecttodeterministicconstraintsmeetadesiredminimumlevelofReliabilitydonotexceedamaximumProbabilityofFailureHastheeffectofpullingdeterministicoptimizationsolutionsawayfromtheconstraintsInitialProbabilityofFailure,PfY1Robust,ReliableSolutionconstraintReliabilityBasedDesignoptimization:BenefitsOptimalSolutionReliability“Shift”andRobust“Shrink”SafetyFactor?Optimization?OrRobust?Focus:AddressingUncertainty,DesigningforQualityImplementation: SixSigmaBasedRobustDesignOptimization(iSIGHT)
PerformanceMeasureApproach(PMA)ReliabilityBasedDesignOptimizationSourcesofVariabilityMaterialrelatedMaterialpropertiesThicknessManufacturingrelatedFormingprocessesMachiningprocessesAssemblyprocessesTestconditionsEnvironmentsHumanFactorsActualvs.expecteduseModelingTechniquesNumericalalgorithmscontrolsConstitutivemodelsComputerhardwareReliabilityBasedDesignOptimizationMethodologiesMinimize Costf(x)Subjectto P[Gi(x)0]
Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodPerformanceMeasureApproach(PMA) (K.K.Choi,Univ.ofIowa)RobustDesignMinimize Variationoff(x)( )Subjectto P[Gi(x)0]
Pfi,i=1-mSQP+MonteCarloMethodSingleLoopSingleVector(SLSV)MeanValueMethodHasofer-LindMethod(DoubleLoop)Inputm(k)xLoopforeachGjtocomputerbj.OptimizationLoopforcostfunctiontoupdatemx
Converge?stopyesnoStartNumberofFunctionEvaluationSingleLoopSingleVectorMethod(Chenetal,1997)startComputermConstraintDerivativesComputera(0)janda*(0)Computerm(0)x=x(0)+b0sxa
*(0)CallOptimizer(SQP)toupdatemx
Computerx(k)=m(k)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024收养协议书锦集:收养评估与干预服务手册3篇
- 2024虚拟现实游戏内容开发与分成合同
- 二零二五年度便利店商品溯源系统开发合同3篇
- 2024长期采购的合同
- 2025年度租赁车辆环保排放检测及整改协议2篇
- 二零二五版房产抵押购销与房地产税务筹划合同3篇
- 2025年度个人与房地产中介服务借款合同规范3篇
- 2025年幼儿园幼儿意外伤害保险合同3篇
- 2025年度存量房交易鉴证服务合同范本3篇
- 二零二五年度植物标本制作与提供合同3篇
- 2025年蛇年春联带横批-蛇年对联大全新春对联集锦
- 表B. 0 .11工程款支付报审表
- 警务航空无人机考试题库及答案
- 空气自动站仪器运营维护项目操作说明以及简单故障处理
- 新生儿窒息复苏正压通气课件
- 2022年12月Python-一级等级考试真题(附答案-解析)
- 法律顾问投标书
- 班主任培训简报4篇(一)
- 成都市数学八年级上册期末试卷含答案
- T-CHSA 020-2023 上颌骨缺损手术功能修复重建的专家共识
- 危重症患者转运指南-课件
评论
0/150
提交评论