【教案】用二分法求方程的近似解+教学设计高一上学期数学人教A版(2019)必修第一册_第1页
【教案】用二分法求方程的近似解+教学设计高一上学期数学人教A版(2019)必修第一册_第2页
【教案】用二分法求方程的近似解+教学设计高一上学期数学人教A版(2019)必修第一册_第3页
【教案】用二分法求方程的近似解+教学设计高一上学期数学人教A版(2019)必修第一册_第4页
【教案】用二分法求方程的近似解+教学设计高一上学期数学人教A版(2019)必修第一册_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《用二分法求方程的近似解》教学设计教学目标(1)通过对二分法原理的学习和探究,帮助学生形成用函数的观点处理方程问题的意识;(2)通过对二分法基本原理的介绍,探索用二分法求近似解的思路和步骤,体会从特殊到一般的数学思维过程,感悟数学的极限思想.教学重点与难点(1)教学重点:理解二分法的基本原理,用二分法求方程近似解的思路与步骤;(2)教学难点:用二分法求方程近似解的算法,以及对精确度的理解.教学过程环节教师教学与学生活动设计意图创设情境渗透数学思想游戏环节:猜猜华为音响的价格(学生活动)游戏反思环节(师生活动)问题1:商品价格“600-800”提示有什么作用?问题2:“多了”“少了”的提示在竞猜过程中起了什么作用?问题3:问题4:怎样快速猜出商品价格?结合现实生活中实例创设情境,以能激发学生兴趣的华为音箱价格竞猜入手导入,激发了学生学习的兴趣,轻松的引入本节课的学习,在热烈的气氛中,让学生不知不觉地进入数学教学的情境中.在游戏反思环节,通过问题串引导学生用二分法的思想将商品价格的范围不断缩小,从而猜测出华为音箱的价格,有效地渗透了数学逼近思想.探究新知从实际问题转入数学问题探究新知1(老师活动)生活中有大量近似值的存在,比如食品外包装的净重量;电影《攀登者》中海拔与大气压之间的关系等等,所以我们有必要研究方程的近似解.探究新知2(师生活动):问题引导,类比猜商品价格的方式求方程的近似解引入问题:对比两个方程的求解追问1:估算方程lnx+2追问2:能不能缩小函数fx=学生活动:借助计算器求方程的近似解(画表格进行计算)次数取a取b|a-b|12.5-0.0842.530.522.750.5122.52.750.2532.6250.2152.52.6250.12542.56250.0662.52.56250.063得出:当|a-b|<0.1时,终止计算.追问3:怎么结束运算?不管是在现实生活中,还是在科学决策中,都存在着大量取近似值的问题,所以我们有必要研究方程的近似解.同时也使学生感受到数学就在身边,体会到数学的价值,激发他们学习数学的积极性,增强数学情感.从特殊方程出发,对比两个方程,一个方程可以快速求出解,而另一个方程无法求出准确值,所以我们有必要研究第二个方程的近似解.类比游戏环节,要求方程的近似解,先求方程解的范围,借助函数零点与方程的解的关系,将方程的解转化为函数的零点,再利用零点存在定理,估算函数零点的初始范围.再次类比游戏环节,借助数形结合和逼近的思想,利用二分法不断地去缩小零点的范围.此时主要是学生的活动,借助手中的计算器,利用零点存在定理和二分法原理缩小零点范围.再次类比游戏环节,引入了本节课的难点精确度的概念,为了很好的理解这个概念,借助数轴让学生感受准确值与近似值差的绝对值小于零点所在范围很难实现,进而转化为准确值所在区间的长度小于精确度,从而结束运算.认识新知归纳步骤老师活动:给出二分法的定义二分法:对于在区间[a,b]上连续不断,且满足fa∙f学生活动:分析定义中的关键词并归纳二分法的步骤二分法及步骤:给定精度ε,用二分法求函数f(1.确定零点所在区间[a,b],验证2.求区间(a,b3.计算f(若fx1=0若fa∙fx1若fb∙fx14.判断是否达到精度ε;即若a-b<ε,则得到零点零点值a通过游戏和求特殊方程近似解的探究,由老师讲解介绍二分法,学生归纳二分法解决问题的一般步骤,让学生从特殊到一般得出求函数零点近似解的的常用方法.培养学生提炼方法,归纳概括的能力,并会学以至用,渗透从特殊到一般的数学思想.合作共赢学生活动:合作共赢,巩固新知设计求近似解的合作共赢环节,再次强调使用二分法的程序性,体现了从一般到特殊的演绎推理的过程.通过学生的讲解,老师了解学生掌握的情况,用学生的思维给学生讲解更通俗易懂,同时也激发了学生学习的兴趣,调动了学生学习的积极性和主动性.应用新知学生活动:应用新知利用课堂练习巩固所学的知识内容、数学思想、数学方法以求达到教学目标;本环节老师提问,让学生起来回答问题,多给学生自主活动的空间.思想方法总结1.化归与转化的思想;2.函数与方程的思想;3.数形结合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论