版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城市临清第二中学2022年高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的周期是(
)A.
B.
C.
D.参考答案:A2.如果二次函数y=x2+2x+(m-2)有两个不同的零点,则m的取值范围是(
)A.
B.
C.
D.参考答案:D3.cos215°﹣sin215°的值为()A. B. C. D.参考答案:C【考点】两角和与差的余弦函数.【专题】三角函数的求值.【分析】将所求式子利用二倍角的余弦函数公式化简,再利用特殊角的三角函数值即可求出值.【解答】解:cos215°﹣sin215°=cos2×15°=cos30°=.故选C【点评】此题考查了二倍角的余弦函数公式,以及特殊角的三角函数值,熟练掌握二倍角的余弦函数公式是解本题的关键.4.已知函数是偶函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为,若的最小正周期为2π,且,则(
)A.-2 B. C. D.2参考答案:B【分析】由题意根据三角函数的图象的对称性求出,由周期求出,由三角函数的值求出,可得函数的解析式,从而求得的值.【详解】已知函数,,是偶函数,,.将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,则有,,,.,,则,故选:.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,函数的部分图象求解析式,属于基础题.5.给定两个长度均为的平面向量和,它们的夹角为,点在以为圆心的圆弧上运动,如图所示,若+,其中,,则的最大值是(
)
A.
B.
C.
D.参考答案:D略6.已知sinα+cosα=(0<α<π),则tanα=()A. B. C. D.或参考答案:B【考点】同角三角函数间的基本关系.【分析】已知等式两边平方,利用同角三角函数间的基本关系化简,求出2sinαcosα的值小于0,得到sinα>0,cosα<0,再利用完全平方公式及同角三角函数间的基本关系求出sinα与cosα的值,即可求出tanα的值.【解答】解:将已知等式sinα+cosα=①两边平方得:(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα=,∴2sinαcosα=﹣<0,∵0<α<π,∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,∴sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则tanα=﹣.故选B7.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A.(] B.() C.(] D.()参考答案:D【考点】分段函数的解析式求法及其图象的作法.【分析】先作出函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,得到x2+x3=6,且﹣<x1<0;最后结合求得x1+x2+x3的取值范围即可.【解答】解:函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,故x2+x3=6,且x1满足﹣<x1<0;则x1+x2+x3的取值范围是:﹣+6<x1+x2+x3<0+6;即x1+x2+x3∈(,6).故选D8.一个正项等比数列前n项的和为3,前3n项的和为21,则前2n项的和为(
)A.18
B.12
C.9
D.6参考答案:C9.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是()A.①②
B.①③C.③④
D.②④参考答案:D10.我国古代数学著作《九章算术》中有这样一个题目:“今有蒲生一日,长三尺;莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”.其大意是“今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减其一半,莞的生长逐日增加一倍.问几日蒲、莞长度相等?”若本题改为求当蒲、莞长度相等时,莞的长度为(
)A.4尺 B.5尺 C.6尺 D.7尺参考答案:B【分析】先分别记蒲每日长的长度构成的数列记为,莞每日长的长度构成的数列记为,由题意得到其首项与公比,再设日后它们的长度和相等,由题意,列出方程,求解,即可得出结果.【详解】设蒲每日长的长度构成的数列记为,则,公比;莞每日长的长度构成的数列记为,则,公比,设日后它们的长度和相等,则有,即,令,得,所以或(舍去),所以莞的长度为.故选B【点睛】本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型.二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,若,则角B的值为___________.参考答案:12.(5分)已知向量=(14,0),=(,),则与的夹角的大小为
.参考答案:考点: 平面向量数量积的运算.专题: 平面向量及应用.分析: 运用向量的数量积的坐标表示,以及向量的夹角公式,由夹角的范围计算即可得到.解答: 由向量=(14,0),=(,),可得=14,||=14,||==2,则cos<,>===,由0≤<,>≤π,可得与的夹角的大小为.故答案为:.点评: 本题考查向量的数量积的坐标表示和向量的夹角公式,主要考查夹角的大小,属于基础题.13.把角化成的形式,则为
★
;参考答案:14.f(x)是定义域为R的偶函数,且f(1+x)=f(1–x),当–1≤x≤0时,f(x)=–x,则f(8.6)=
。参考答案:0.315.sin215°﹣cos215°=.参考答案:﹣【考点】二倍角的余弦.【专题】三角函数的求值.【分析】由条件利用二倍角的余弦公式化简所给的式子可得结果.【解答】解:,故答案为:﹣.【点评】本题主要考查二倍角的余弦公式的应用,属于基础题.16.若函数(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.参考答案:(1,]【考点】函数的值域.【专题】函数思想;综合法;函数的性质及应用.【分析】x≤2时,容易得出f(x)≥4,而f(x)的值域为[4,+∞),从而需满足2+logax≥4,(x>2)恒成立,从而可判断a>1,从而可得出loga2≥2,这样便可得出实数a的取值范围.【解答】解:x≤2时,﹣x+6≥4;∴f(x)的值域为[4,+∞);∴x>2时,2+logax≥4恒成立;∴logax≥2,a>1;∴loga2≥2;∴2≥a2;解得;∴实数a的取值范围为.故答案为:.【点评】考查函数值域的概念,分段函数值域的求法,以及一次函数、对数函数的单调性,函数恒成立问题的处理方法.17.关于函数y=log(x-2x+3)有以下4个结论:其中正确的有
.①定义域为(-;
②递增区间为;③最小值为1;
④图象恒在轴的上方.参考答案:②③④三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)已知:(1)求值;(2)求角的值.参考答案:19.中华龙鸟是生存于距今约1.4亿年的早白垩世现已灭绝的动物,在一次考古活动中,考古学家发现了中华龙鸟的化石标本共5个,考古学家检查了这5个标本股骨和肱骨的长度,得到如下表的数据:股骨长度x/cm3856596473肱骨长度y/cm4163707284若由资料可知肱骨长度y与股骨长度x呈线性相关关系.(1)求y与x的线性回归方程y=x+(,精确到0.01);(2)若某个中华龙鸟的化石只保留有股骨,现测得其长度为37cm,根据(1)的结论推测该中华龙鸟的肱骨长度(精确到1cm).(参考公式和数据:b=,a=﹣,xiyi=19956,x=17486)参考答案:【考点】线性回归方程.【专题】计算题;应用题;函数思想;综合法;概率与统计.【分析】(1)求出,代入回归系数公式解出,,得到回归方程;(2)把x=37代入回归方程求出y即为肱骨长度的估计值.【解答】解:(1)=(38+56+59+64+73)=58,=(41+63+70+72+84)=66,∴==1.23,=66﹣1.23×58=﹣5.34.∴y与x的线性回归方程是y=1.23x﹣5.34.(2)当x=37时,y=1.23×37﹣5.34≈40.∴此中华龙鸟的肱骨长度约为40cm.【点评】本题考查了线性回归方程的求法和数值估计,属于基础题.20.(本小题13分)在海岸A处,发现北偏东45°方向距A为-1海里的B处有一艘走私船,在A处北偏西75°的方向,距A为2海里的C处的缉私船奉命以10海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B处向北偏东30°方向逃窜,问缉私船沿着什么方向能最快追上走私船?并求出所需要的时间.(注:≈2.449)参考答案:解:设缉私船追上走私船所需时间为t小时,如图所示,则有CD=10t海里,BD=10t海里.在△ABC中,∵AB=(-1)海里,AC=2海里,∠BAC=45°+75°=120°,根据余弦定理可得BC=[:
]=海里.根据正弦定理可得sin∠ABC===.∴∠ABC=45°,易知CB方向与正北方向垂直.从而∠CBD=90°+30°=120°.在△BCD中,根据正弦定理可得:sin∠BCD===,∴∠BCD=30°,∠BDC=30°.∴BD=BC=海里.则有10t=,t=≈0.245小时=14.7分钟.故缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.
略21.已知函数.(1)若,求函数f(x)的值;(2)求函数f(x)的值域.参考答案:(1);(2)[1,2].【详解】(1),.(2)由(1),,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 发动机润滑系统的设计与性能分析考核试卷
- 《健美增肌与营养》课件
- 内陆养殖产业链建设与升级考核试卷
- 苏州科技大学天平学院《器乐名作与演奏赏析》2021-2022学年第一学期期末试卷
- 如何运用新媒体和社交媒体进行营销考核试卷
- 苏州科技大学天平学院《钢琴基础理论》2021-2022学年第一学期期末试卷
- 大班安全防抢劫
- 2024业主签装修合同时应注意的事项
- 秋季预防传染病
- 清明节网上祭英烈活动
- 小红书种草营销师模拟题及答案(单选+多选+判断)
- 光伏发电工程建设标准工艺手册(2023版)
- 危险化学品考试试题(含答案)
- MOOC 颈肩腰腿痛中医防治-暨南大学 中国大学慕课答案
- MOOC 国家安全概论-西安交通大学 中国大学慕课答案
- 智能护理:人工智能助力的医疗创新
- 【基于近五年数据的云南嘉华食品实业财务报表分析15000字】
- 通过一起放火案件浅析放火案件的移交工作
- 南京农业大学学生在校学习期间现实表现证明
- 机械专业个人职业生涯规划书范文3篇
- 中医呼吸系统疾病研究的现状及未来临床研究思路
评论
0/150
提交评论