版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
R·九年级上册21.2解一元二次方程
21.2.1配方法
第2课时配方法新课导入导入课题请把方程(x+3)2=5化成一般形式。那么你能将方程x2+6x+4=0转化为(x+m)2=n的形式吗?这节课我们一起来学习配方法。状元成才路学习目标(1)知道用配方法解一元二次方程的一般步骤,会
用配方法解一元二次方程.(2)通过配方进一步体会“降次”的转化思想.状元成才路推进新课知识点1用配方法解一元二次方程怎样解方程x2+6x+4=0?分析:我们已经会解方程(x+3)2=5.因为它的左边是含有x的完全平方式,右边是非负数,所以可以直接降次解方程.那么,能否将方程x2+6x+4=0转化为可以直接降次的形式再求解呢?状元成才路降次左边写成完全平方式使左边配成x2+2bx+b2的形式x2+6x+4=0x2+6x=-4移项两边加9x2+6x+9=-4+9(x+3)2=5
解一次方程状元成才路回忆完全平方公式a2+2ab+b2=(a+b)2思考:为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.状元成才路试一试:对下列各式进行配方:x2+10x+25=(x+5)2
x2-12x+36=(x-6)2状元成才路知识点2用配方法解一元二次方程的一般步骤例1
解下列方程(1)x2-8x+1=0(2)2x2+1=3x(3)3x2-6x+4=0(1)解:移项,得:x2-8x=-1
配方,得:x2-8x+42=-1+42(x-4)2=15状元成才路(2)2x2+1=3x
(2)解:移项,得:2x2-3x=-1二次项系数化为1:
配方,得:状元成才路(3)3x2-6x+4=0(3)解:移项,得:3x2-6x=-4二次项系数化为1:
配方,得:因为实数的平方不会是负数,所以x取任何实数时,(x-1)2都是非负数,上式都不成立,即原方程无实数根.状元成才路思考1:用配方法解一元二次方程时,移项时要
注意什么?思考2:说说配方法解一元二次方程的一般步骤.移项时需注意改变符号.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.状元成才路一般地,如果一个一元二次方程通过配方转化成(x+n)2=p.规律总结①当p>0时,则
,方程的两个根为②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为
x1=x2=-n.③当p<0时,则方程(x+n)2=p无实数根.状元成才路1.用配方法解方程-x2+6x+7=0时,配方后得的方程为()A.(x+3)2=16 B.(x-3)2=16C.(x+3)2=2 D.(x-3)2=22.填空.(1)4x2+4x+1=(2)x2-30x+225=随堂演练基础巩固(2x+1)2
B(x-15)2
状元成才路3.用配方法解下列方程.
(1)x2+10x+9=0;
(2)x2+4x-9=2x-11;解:移项,x2+10x=-9
配方,x2+10x+25=16(x+5)2=16
x+5=±4方程的两个根为
x1=-1,x2=-9解:移项,x2+2x=-2
配方,x2+2x+1=-1(x+1)2=-1
方程没有实数根.状元成才路(3)x(x+4)=8x+12解:化简移项
x2-4x=12
配方
x2-4x+4=16(x-2)2=16
x-2=±4
方程的两个根为x1=6,x2=-2状元成才路4.当a为何值时,多项式a2+2a+18有最小值?并求出
这个最小值.解:对原式进行配方,则原式=(a+1)2+17
∵(a+1)2≥0,
∴当a=-1时,原式有最小值为17.状元成才路课堂小结配方法解一元二次方程配方法直接开平方法ax2+bx+c=0(a≠0)(x+m)2=n(n≥0)状元成才路
上完这节课,你收获了什么?有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度离婚协议财产分割及子女抚养权协商书15篇
- 2024年度担保公司业务拓展合作协议3篇
- 2024年度农产品加工区域代理合作协议3篇
- 2024年度幼儿园园长全面管理聘用合同范本3篇
- 2024停车场智能化改造与运营维护综合合同3篇
- 2024医疗保健机构内部审计与风险管理合同3篇
- 2024年二零二四年度农业种子安全检测与风险评估合同3篇
- 2024年度担保业务操作规范合同3篇
- 2024年度能源单位劳务派遣劳动合同(含环保责任)3篇
- 2024年度特色旅游演出项目合作合同3篇
- 期末素养展示-2024-2025学年语文三年级上册统编版
- 2024中华人民共和国学前教育法学习解读课件
- 蒸镀机基础知识单选题100道及答案解析
- 2024年秋新人教PEP版3年级上册英语教学课件 Unit 4 第4课时 Part B Let's talk
- 私募股权基金公司的账务处理-记账实操
- 期末模拟考试卷01-2024-2025学年上学期高二思想政治课《哲学与人生》原题卷+答案卷
- 沙金矿承包开采合作协议书范文
- 英语四级模拟试题(附答案)
- 2024智慧城市数据分类标准规范
- 文玩交易合同(2篇)
- 智研咨询发布-2024年中国牛油果行业现状、发展环境及投资前景分析报告
评论
0/150
提交评论