版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设和分别表示函数的最大值和最小值,则等于()A. B. C. D.2.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,323.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为()A. B. C. D.4.与角终边相同的角是A. B. C. D.5.已知,则下列结论正确的是()A. B. C. D.不能确定6.在中,,则()A. B. C. D.7.采用系统抽样方法从人中抽取人做问卷调查,为此将他们随机编号为,,,,分组后某组抽到的号码为1.抽到的人中,编号落入区间的人数为()A.10 B. C.12 D.138.如图所示四棱锥的底面为正方形,平面则下列结论中不正确的是()A. B.平面C.直线与平面所成的角等于30° D.SA与平面SBD所成的角等于SC与平面SBD所成的角9.已知直线与圆C相切于点,且圆C的圆心在y轴上,则圆C的标准方程为()A. B.C. D.10.如果,那么下列不等式错误的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最小值是_______.12.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是.13.若数列的前4项分别是,则它的一个通项公式是______.14.数列中,其前n项和,则的通项公式为______________..15.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.16.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某生产企业研发了一种新产品,该产品在试销一个阶段后得到销售单价(单位:元)和销售量(单位:万件)之间的一组数据,如下表所示:销售单价/元销售量/万件(1)根据表中数据,建立关于的线性回归方程;(2)从反馈的信息来看,消费者对该产品的心理价(单位:元/件)在内,已知该产品的成本是元,那么在消费者对该产品的心理价的范围内,销售单价定为多少时,企业才能获得最大利润?(注:利润=销售收入-成本)参考数据:参考公式:18.已知无穷数列,是公差分别为、的等差数列,记(),其中表示不超过的最大整数,即.(1)直接写出数列,的前4项,使得数列的前4项为:2,3,4,5;(2)若,求数列的前项的和;(3)求证:数列为等差数列的必要非充分条件是.19.如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.(1)设圆N与y轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点且,求直线l的方程.20.已知圆,为坐标原点,动点在圆外,过点作圆的切线,设切点为.(1)若点运动到处,求此时切线的方程;(2)求满足的点的轨迹方程.21.如图所示,在四棱锥P-ABCD中,,,,平面底面ABCD,E和F分别是CD和PC的中点.求证:(1)平面BEF;(2)平面平面PCD.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据余弦函数的值域,确定出的最大值和最小值,即可计算出的值.【详解】因为的值域为,所以的最大值,所以的最小值,所以.故选:C.【点睛】本题考查余弦型函数的最值问题,难度较易.求解形如的函数的值域,注意借助余弦函数的有界性进行分析.2、B【解析】
对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.3、D【解析】
古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:故答案选D【点睛】本题考查了概率的计算,属于简单题.4、C【解析】∵与终边相同的角的集合为∴令,得∴与角终边相同的角是故选C5、C【解析】
根据题意,求出与的值,比较易得,变形可得答案.【详解】解:根据题意,,,易得,则有,故选:C.【点睛】本题主要考查不等式的大小比较,属于基础题.6、B【解析】
根据向量的三角形法则进行转化求解即可.【详解】∵,∴,又则故选:B【点睛】本题考查向量加减混合运算及其几何意义,灵活应用向量运算的三角形法则即可求解,属于基础题.7、C【解析】
由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为an=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为1,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.8、C【解析】
根据空间中垂直关系的判定和性质,平行关系的判定和性质,以及线面角的相关知识,对选项进行逐一判断即可.【详解】对A:因为底面ABCD为正方形,故ACBD,又SD底面ABCD,AC平面ABCD,故SDAC,又BD平面SBD,SD平面SBD,故AC平面SBD,又SB平面SBD,故AC.故A正确;对B:因为底面ABCD为正方形,故AB//CD,又CD平面SCD,故AB//平面SCD.故B正确.对C:由A中推导可知AC平面SBD,故取AC与BD交点为O,连接SO,如图所示:则即为所求线面角,但该三角形中边长关系不确定,故线面角的大小不定,故C错误;对D:由AC平面SBD,故取AC与BD交点为O,连接SO,则即为SA和SC与平面SBD所成的角,因为,故,故D正确.综上所述,不正确的是C.故选:C.【点睛】本题综合考查线面垂直的性质和判定,线面平行的判定,线面角的求解,属综合基础题.9、C【解析】
先代入点可得,再根据斜率关系列式可得圆心坐标,然后求出半径,写出标准方程.【详解】将切点代入切线方程可得:,解得,设圆心为,所以,解得,所以圆的半径,所以圆的标准方程为.故选:.【点睛】本题考查了直线与圆的位置关系,属中档题.10、A【解析】
利用不等式的性质或比较法对各选项中不等式的正误进行判断.【详解】,,,则,,可得出,因此,A选项错误,故选:A.【点睛】本题考查判断不等式的正误,常利用不等式的性质或比较法来进行判断,考查推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
根据,将所求等式化为,由基本不等式,当a=b时取到最小,可得最小值。【详解】因为,所以,所以(当且仅当时,等号成立).【点睛】本题考查基本不等式,解题关键是构造不等式,并且要注意取最小值时等号能否成立。12、5【解析】试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,.法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.13、【解析】
根据等比数列的定义即可判断出该数列是以为首项,为公比的等比数列,根据等比数列的通项公式即可写出该数列的一个通项公式.【详解】解:∵,该数列是以为首项,为公比的等比数列,该数列的通项公式是:,故答案为:.【点睛】本题主要考查等比数列的定义以及等比数列的通项公式,属于基础题.14、【解析】
利用递推关系,当时,,当时,,即可求出.【详解】由题知:当时,.当时,.检验当时,,所以.故答案为:【点睛】本题主要考查根据数列的前项和求数列的通项公式,体现了分类讨论的思想,属于简单题.15、【解析】
过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)8.75元.【解析】
(1)根据最小二乘法求线性回归方程;(2)利用线性回归方程建立利润的函数,再求此函数的最大值.【详解】(1)关于的回归方程为.(2)利润该函数的对称轴方程是,故销售单价定为元时,企业才能获得最大利润.【点睛】本题考查线性回归方程和求利润的最值,属于基础题.18、(1)的前4项为1,2,3,4,的前4项为1,1,1,1;(2);(3)证明见解析【解析】
(1)根据定义,选择,的前4项,尽量选用整数计算方便;(2)分别考虑,的前项的规律,然后根据计算的运算规律计算;(3)根据必要不充分条件的推出情况去证明即可.【详解】(1)由的前4项为:2,3,4,5,选、的前项为正整数:的前4项为1,2,3,4,的前4项为1,1,1,1;(2)将的前项列举出:;将的前项列举出:;则;(3)充分性:取,此时,将的前项列举出:,将前项列出:,此时的前项为:,显然不是等差数列,充分性不满足;必要性:设,,当为等差数列时,因为,所以,又因为,所以有:,且,所以;,,不妨令,则有如下不等式:;当时,令,则当时,,此时无解;当时,令,则当时,,此时无解;所以必有:,故:必要性满足;综上:数列为等差数列的必要非充分条件是【点睛】本题考查数列的定义以及证明,难度困难.对于充分必要条件的证明,需要对充分性和必要性同时分析,不能取其一分析;新定义的数列问题,可通过定义先理解定义的含义,然后再分析问题.19、(1)(2)或.【解析】
(1)根据由圆心在直线y=6上,可设,再由圆N与y轴相切,与圆M外切得到圆N的半径为和得解.(2)由直线l平行于OA,求得直线l的斜率,设出直线l的方程,求得圆心M到直线l的距离,再根据垂径定理确定等量关系,求直线方程.【详解】(1)圆M的标准方程为,所以圆心M(7,6),半径为5,.由圆N圆心在直线y=6上,可设因为圆N与y轴相切,与圆M外切所以,圆N的半径为从而解得.所以圆N的标准方程为.(2)因为直线l平行于OA,所以直线l的斜率为.设直线l的方程为,即则圆心M到直线l的距离因为而所以解得或.故直线l的方程为或.【点睛】本题主要考查了直线方程,圆的方程,直线与直线,直线与圆,圆与圆的位置关系,还考查了运算求解的能力和数形结合的思想,属于中档题.20、(1)或;(2).【解析】
解:把圆C的方程化为标准方程为(x+1)2+(y-2)2=4,∴圆心为C(-1,2),半径r=2.(1)当l的斜率不存在时,此时l的方程为x=1,C到l的距离d=2=r,满足条件.当l的斜率存在时,设斜率为k,得l的方程为y-3=k(x-1),即kx-y+3-k=0,则=2,解得k=.∴l的方程为y-3=(x-1),即3x+4y-15=0.综上,满足条件的切线l的方程为或.(2)设P(x,y),则|PM|2=|PC|2-|MC|2=(x+1)2+(y-2)2-4,|PO|2=x2+y2,∵|PM|=|PO|.∴(x+1)2+(y-2)2-4=x2+y2,整理,得2x-4y+1=0,∴点P的轨迹方程为.考点:直线与圆的位置关系;圆的切线方程;点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店销售经理的述职报告
- 会计学原理张曾莲课后参考答案
- 四川省泸州市(2024年-2025年小学五年级语文)统编版随堂测试((上下)学期)试卷及答案
- 2024年航空制造和材料专用设备项目资金需求报告代可行性研究报告
- 多姿多彩的图形教案
- 2024安全加密芯片技术规范
- 2023-2024学年广东省深圳市福田区九年级(上)期中英语试卷
- 上海市县(2024年-2025年小学五年级语文)统编版能力评测(下学期)试卷及答案
- 2023-2024学年广东省深圳市宝安区七年级(下)期末英语试卷
- 三年级数学(上)计算题专项练习附答案
- 卵巢恶性肿瘤教学查房
- 《玄武岩纤维沥青混合料技术规范》征求意见稿
- 2023年秋季国开《学前教育科研方法》期末大作业(参考答案)
- 2023年电焊工技能鉴定实操试题
- 国企三公经费管理建议
- 幼儿学大班数学试题(6岁)1
- 四级高频词汇
- 央国企信创化与数字化转型规划实施
- 1.四方埔社区服务中心场地管理制度
- 智慧城市治理CIM平台建设方案
- 心肺复苏后疾病的病理生理和预后
评论
0/150
提交评论